DOI QR코드

DOI QR Code

Theoretical Analysis of Soil Arching in Geosynthetic-Reinforced and Pile-Supported Embankment Systems

토목섬유보강 성토지지말뚝시스템의 지반아칭에 관한 이론해석

  • 홍원표 (중앙대학교 공과대학 건설환경공학과) ;
  • 이재호 (중앙대학교 방재연구소)
  • Received : 2008.01.08
  • Accepted : 2008.03.05
  • Published : 2008.03.31

Abstract

Theoretical analysis are developed to estimate the load transfer by soil arching in geosynthetic-reinforced and pile-supported(GRPS) embankment systems. According to the results of analyses, the efficiency of embankment pile systems increases when the geosynthetics are installed with piles. Especially the increment of efficiency is more remarkable in the low embankment height, where soil arching can not be fully developed. The factors affecting the load transfer in GRPS embankment systems are the pile spacing, the height and properties of embankments, and the strength of geosynthetics. The efficiency decreases with increasing the pile spacing, while it increases with the height and internal friction angle of embankment fills, and the strength of geosynthetics. These results of analyses show the proposed analysis method is resonable to estimate the soil arching in GRPS embankment systems.

토목섬유보강 성토지지말뚝시스템에서 지반아칭에 의한 하중전이 특성을 규명할 수 있는 이론해석법을 개발하였다. 이론해석 결과, 성토지지말뚝에 토목섬유가 복합시공되면, 말뚝의 효율이 증가하였으며, 효율의 증대효과는 지반아치가 완전히 발달하기 이전인 저성토 구간에서 특히 두드러지게 나타났다. 또한, 이론해석법에 의한 하중전이는 말뚝의 간격, 성토고, 지반정수 및 토목섬유에 크게 영향을 받고 있다. 즉, 말뚝의 간격이 증가하면 말뚝의 효율은 감소하며, 성토고, 성토지반의 내부마찰각 및 토목섬유의 강도가 증가하면 효율이 커지게 된다. 이와같은 해석결과는 본 제안식이 토목섬유보강 성토지지말뚝시스템에서의 지반아칭효과를 잘 설명해주는 합리적인 해석법임을 나타내고 있다.

Keywords

References

  1. 신은철, 이상혁, 이명원(2000) 지오그리드와 말뚝에 의한 연약지반 보강효과, 2000년 한국지반공학회 토목섬유기술위원회 토목섬유 특별세미나 논문집, 한국지반공학회, pp. 61-69
  2. 홍원표, 이재호(2007) 말뚝과 토목섬유로 지지된 성토지반의 아칭효과, 한국지반공학회논문집, 한국지반공학회, 제23권, 제6호, pp. 53-66
  3. British Standard Institution (1995) BS 8006; Code of practice for strengthened/reinforced soils and other fills, London
  4. Broms, B.B. and Wong, I.H. (1985) Embankment piles, Soil Improvement Methods, Proceedings 3rd International Geotechnical Seminar, Nanyang Technological Institute, Singapore, pp. 167-178
  5. Gartung, E. and Verspohl, J. (1996) Geogrid reinforced embankment on pile-monitoring, Proceedings of the International, Symposium on Earth Reinforcement, Fukuoka, Japan, pp. 209-214
  6. Guido, V.A., Kneuppel, and Sweeney, M.A. (1987) Plate loading tests on geogrid-reinforced earth slabs, Proceedings Geosynthetics '87 Conference, New Orleans, pp. 216-225
  7. Hewlett, W.J. and Randolph, M.F. (1988) Analysis of piled embankments, Ground Engineering, London England, Vol. 21, No. 3, pp. 12-18
  8. Hong, W.P., Lee, J.H., and Lee, K.W. (2005) Analysis of vertical loads acting on embankment piles, Proceedings of 15th International Offshore and Polar Engineering Conference, Seoul, Korea, pp. 641-646
  9. Hong, W.P., Lee, J.H., and Lee, K.W. (2007) Load transfer by soil arching in pile-supported embankments, Soils and Foundations, Vol. 47, No. 5, pp. 833-843 https://doi.org/10.3208/sandf.47.833
  10. Jones, C.J.F.P., Lawson, C.R., and Ayres, D.J. (1990). Geotextile reinforced piled embankments. Proc. 4th Int. Conf. on Geotextiles, Balkema, Rotterdam, the Netherland, pp. 155-160
  11. Liu, L.H., Ng, C.W.W., and Fei, K. (2007) Performance of a geogrid-reinforced and pile-supported highway embankment over soft clay: Case study, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 12, pp. 1483-1493 https://doi.org/10.1061/(ASCE)1090-0241(2007)133:12(1483)
  12. Low, B.K. Tang, S.K., and Choa, V. (1994) Arching in piled embankments, Journal of Geotechnical Engineering, ASCE, Vol. 120, No. 11, pp. 1917-1937 https://doi.org/10.1061/(ASCE)0733-9410(1994)120:11(1917)
  13. Reid, W.M. and Buchannan, N.W. (1983) Bridge approach support piling. Proc., International Conference on Advances in Piling and Ground Treatment, ICE, London, pp. 267-274
  14. Spangler, M.G. and Hardy, R.L. (1973) Soil Engineering, Intext Education Publisher, New York