• Title/Summary/Keyword: 터널 유형

Search Result 89, Processing Time 0.027 seconds

A Study on the Characteristics of Each Type of LED Digital Landscape Lighting in Expressway Tunnel (고속도로 터널 내 LED Digital 경관조명 디자인의 유형별 특징 비교 연구)

  • Hwang, Ye-Jin
    • Journal of Digital Convergence
    • /
    • v.19 no.12
    • /
    • pp.457-462
    • /
    • 2021
  • As South Korea is a mountainous topography, installation of tunnel is essential for construction of expressway in straight lines. According to "2019 Road Bridge and Tunnel Status Report", there are 2,682 tunnels in Korea with total length of 2,077km. Tunnels take up 1.9% of total road length and the number of tunnel increased by 94% with 1,300 newly constructed tunnels over the 10 years. According to domestic and foreign researches, a long tunnel over 1km in expressway has dark lightings and monotonous wall design which decrease driver's concentration and make the driver feel bored. This leads to feeling fatigue and drowsiness more easily. In response, Korea Expressway Corporation installed design lighting that increases attentiveness on 10 tunnels with total length over 3km by 2020. To reduce the risks of accident that may happen inside the tunnel, this study conducted a comparative analysis on characteristics of each type of LED landscape lighting installed inside the expressway tunnel. The study aimed on providing the basic material for effective installation of LED landscape lighting for securing driving stability, reducing fatigue, and lowering the risk of drowsiness.

Analysis of Relative Risk by Accident Types at Intersections, Crosswalk and Tunnel Sections (교차로, 횡단보도, 터널 구간에서 사고유형에 따른 상대적 위험도 분석)

  • Lee, Hyunmi;Jeon, Gyoseok;Kim, Hyung Jun;Jang, Jeong Ah
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.841-851
    • /
    • 2019
  • This study presents risk ranking by accident types at intersections, crosswalk and tunnel sections. An ordered logit model was used to estimate the accident severity of traffic accidents based on 58,868 accident records that have occurred on the Seoul and Gyeonggi-do over the period 2014-2017. The factors affecting the injury severity were identified by the estimated model first, and risk ranking was proposed according to conditions of accident occurrence using relative ratio analysis later. The analysis results showed that the injury severity dramatically depends on the location and time of the accident. The analysis results showed that the injury severity dramatically depends on the location and time of the accident. Furthermore, there are severe injury cases in terms of the injury severity despite the small number of occurrence of traffic accident, or there are severe injury cases in terms of the injury severity despite the high frequency of occurrence of traffic accident.

Recovery Executions of Collapsed Face in Weak Zone (저토피 연약대 터널막장 붕락에 대한 갱내 보강사례)

  • Lee, Hong-Sung;Woo, Sang-Baik;Choi, Byung-Kil;Park, Kyung-Wook
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.331-341
    • /
    • 2006
  • 터널 설계시 일반적으로 지반조사와 물리탐사를 시행하여 지층에 따른 적절한 터널 지보패턴을 설정하고 있으나, 다양한 지반 및 지질특성과 설계단계에서 미쳐 발견되지 못한 단층등의 연약대로 인하여 시공시 터널내에서 종종 붕락사고가 발생하고 있다. 터널 굴착시 발생하는 붕락은 터널의 안정성 저하 및 공기 지연 등의 큰 문제점들을 발생시키므로 조기에 적절한 보강방안이 요구된다. 본 논문에서는 터널 굴착시 발생한 두개의 붕락사고에 대해서 붕락원인과 붕괴유형을 파악하고 현장 여건에 맞는 신속한 보강대책을 제시하고 시공한 보강사례이다. 향 후 본 사례와 유사한 터널붕락사고가 발생할 경우 보강설계 및 보강방안을 계획.수립하는데 유용한 참고자료가 될 것이다.

  • PDF

설계기준해설 - 과거 터널현장 국부적인 붕락 유형 사례 연구

  • Kim, Nak-Yeong;Hwang, Yeong-Cheol
    • 지반과기술
    • /
    • v.10 no.4
    • /
    • pp.20-31
    • /
    • 2013
  • 본 터널 붕락 사례 연구를 종합적으로 분석해 볼때, 시공 공정 중에 발생 가능한 붕괴 및 붕락은 앞서와 같이 과거의 여러 사례들을 토대로 분석함으로서 예측 할 수 있지만, 시공 외적인 요인에 대해서는 사실상 조사, 설계, 시공 중의 오류에 의해 발생되는 것이기 때문에 파악하기 어렵다. 본 터널 붕락사례를 통해 원인을 분석 정리 하면 다음과 같다. (1) 불규칙한 지반구조적 원인 대부분의 터널 붕락을 일으키는 불규칙한 지반구조는 과거 지반구조의 침식 또는 대규모 지반운동 등 지반구조의 급속한 변화에 기인한 것이다. 터널 시공전에 면밀한 사전 지반조사와 선진 보오링 등으로 정확한 지반구조를 파악한다면 이로 인한 터널 붕락은 최소화 시킬수 있다. (2) 기획과 설계단계에서의 오류 충분치 못한 지반조사에 의한 설계 및 부적절한 시공자재 사용등으로 터널 붕락이 발생 될수 있다. 터널 굴착 주변 지반조건과 이러한 지반조건에 적합한 터널 굴착 및 보강공법 등이 터널 설계시 심도있게 검토되어야 할 가장 중요한 요소이다. (3) 시공 및 관리에서의 오류 경험이 부족한 터널기술자의 현장 감독과 현장에서 수집되는 각종 계측자료의 신뢰성 부족과 결과의 재적용 미흡으로 효율적인 계측 및 지반정보를 활용한 정밀 시공이 이루어지지 않는 것도 터널 붕락의 중요한 요인으로 분석되었다. (4) 현장관리 조사서의 표준화 부족 터널굴착공사중 붕락이 발생된 현장의 막장조사결과를 보면 조사자가 임의로 표시를 하여 각 터널별 막장조사결과가 매우 상이할 뿐만 아니라 각 터널별로 기재방법, 양식이 달라서 실제 원인분석에 활용하기가 어려운 것으로 분석되었다.

  • PDF

Methodology to Quantify Rock Behavior in Shallow Rock Tunnels by Analytic Hierarchy Process and Rock Engineering Systems (계층 분석적 의사결정과 암반 공학 시스템에 의한 저심도 암반터널에서의 암반거동 유형 정량화 방법론)

  • Yoo, Young-Il;Kim, Man-Kwang;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.465-479
    • /
    • 2008
  • For the quantitative identification of rock behavior in shallow tunnels, we recommend using the rock behavior index (RBI) by the analytic hierarchy process (AHP) and the Rock Engineering Systems (RES). AHP and RES can aid engineers in effectively determining complex and un-structured rock behavior utilizing a structured pair-wise comparison matrix and an interaction matrix, respectively. Rock behavior types are categorized as rock fall, cave-in, and plastic deformation. Seven parameters influencing rock behavior for shallow depth rock tunnel are determined: uniaxial compressive strength, rock quality designation (RQD), joint surface condition, stress, pound water, earthquake, and tunnel span. They are classified into rock mass intrinsic, rock mass extrinsic, and design parameters. An advantage of this procedure is its ability to obtain each parameter's weight. We applied the proposed method to the basic design of Seoul Metro Line O and quantified the rock behavior into RBI on rock fall, cave-in, and plastic deformation. The study results demonstrate that AHP and RES can give engineers quantitative information on rock behavior.

Study on Investigation and Analysis about Damage of Tunnels (국내외 터널구조물의 변상에 관한 조사 및 분석)

  • Bae, Gyu-Jin;Lee, Sung-Won;Cho, Mahn-Sup;Lee, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.3
    • /
    • pp.31-43
    • /
    • 2001
  • In this study, we carried out investigation and analysis on damages in tunnels on order to provide the basic information for the safety assessment of tunnels and to minimize the potential damage of the same kind as investigated. The frequencies of occurrence in terms of 4 items, i.e., service life interval, type of the damage, cause of the damage, and geological condition, were examined and summarized based on 44 foreign and domestic cases of tunnel damages. Also, we carried out a survey research of which the content included 28 questions on the tunnel safety assessment. The answers collected from domestic experts in tunneling suggested that the most probable cause of the tunnel damages was cracking in tunnels at 42~58%. They also suggested that the poor constrution work strongly caused the damages. Therefore, to ensure tunnel safety, high quality of constrution should be maintained as examined. The types of damage and their extent of influence on the overall tunnel safety are of practical importance to be used in the artficial intelligent system for tunnel safety assessment.

  • PDF

A Basic Study on the Prediction of Collapse of Tunnels Using Artificial Neural Network (인공신경망 기법을 이용한 터널 붕괴 예측에 관한 기초 연구)

  • Kim, Hong-Heum;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.2
    • /
    • pp.5-17
    • /
    • 2016
  • Collapse of a tunnel can occur anytime, anywhere due to the special characteristics of tunnel structures and unexpected geological conditions during construction. Tunnel collapse will lead to economic losses and casualties. So various studies are continually being conducted to prevent economic losses, casualties and accidents. In this study, we analyzed data from 56 domestic construction tunnel collapse sites, and input factors to be applied to the artificial neural network were selected by the sensitivity analysis. And for the artificial neural network model design studies were carried out with the selected input factors and optimized ANN model to predict the type of tunnel collapse was determined. By using it, in 12 sites where tunnel collapse occurred applicability evaluation was conducted. Thus, the tunnel collapse type predictability was verified. These results will be able to be used as basic data for preventing and reinforcing collapse in the tunnel construction site.

Study on development of data base system and pattern analysis of tunnel portal slope in Korea (국내 터널 갱구사면 데이터베이스관리 시스템 개발 및 상태평가 기법에 관한 연구)

  • Baek, Yong;Kwon, O-Il;Koo, Ho-Bon;Bae, Gyu-Jin;Lee, Seoung-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.3
    • /
    • pp.213-225
    • /
    • 2004
  • The number of tunnels are in fact increasing as a part of linear improvement project of general national highway and road enlargement and pavement project. Recently, collapses of portal slope are also occurring considerably, due to local raining from severe rain storm and abnormal weather. Accordingly, it was risen a necessity to efficiently respond to tunnel portal slope damage and maintenance in Korea and oversea nations. This paper is a basic proposal to execute a survey on the current status and state of the tunnel portal slopes that were already installed and are now being operated along general national highways, and also to execute state evaluation for the purpose of managing those effectively. As a research method, domestic tunnels were analyzed in accordance with geometrical shape such as access type, portal form, and tunnel type, etc. via field survey to analyze the types of tunnel portal slopes along national highways. State evaluation classification sheet is presented to divide classes for the danger state of the surveyed portal slopes, and then the related grades are divided. It is mainly aimed at classifying the tunnel portal slope along national highways with using this state evaluation, to use it as basic data so that continuous maintenance can be executed in the future in accordance with danger classes.

  • PDF

Prediction Method and Characteristics of Micro-pressure Wave on High-speed Railway Tunnel (고속선 터널미기압파 특성 및 예측기법 연구)

  • Yun, Su-Hwan;Nam, Seong-Won;Kim, Seok-Won
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.1
    • /
    • pp.8-14
    • /
    • 2015
  • This paper describes a prediction method for micro-pressure wave emitted from a tunnel on the Kyung-bu high-speed railway. Pressure and micro-pressure wave were measured simultaneously to obtain some constants for the prediction method. The change of a micro-pressure wave were analyzed according to the speed of the train, the track bed type, and the distance from a tunnel portal. At a train speed of 300km/h, the micro-pressure wave of 4.0km long ballast track tunnel is about 7.5Pa; that of 3.3km long slab track tunnel is about 14.3Pa The strength of the micro-pressure wave decreases in inverse proportion to the distance and becomes about 0.5~1.0Pa at a point of 100m from the tunnel exit. Micro-pressure waves were predicted using the formula with the obtained the constants. Using a comparison between the predicted data and field measurement data, it was confirmed that micro-pressure wave can be predicted easily through the prediction formula.

Development of Countermeasure Expert System for Tunneling Failure (터널 붕락특성과 시공 중 보강공법 선정방법 개발)

  • 김창용;박치현;배규진;홍성완;오명렬
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.418-429
    • /
    • 2000
  • Many Studies of tunnel and tunnelling safety have been developed continuously based on the increasing social interests in underground space since 1990's in Korea. Because the growth of population in metropolitan has been accelerated at a faster pace than the development of the cities, underground facilities have been created as a great extent in view of less land space available. In this study, a lot of types of tunnel failure were surveyed and the detail causes were studied after many cases of tunnel failure were collected. There were suggested brief countermeasure of tunnel failure through case study. An expert system was developed to predict the safety of tunnel and choose proper tunnel reinforcement system using fuzzy quantification theory and fuzzy inference rule based on tunnel information database. The comparison result between the predicted reinforcement system level and measured ones was very similar. In-situ data were obtained in three tunnel sites including subway tunnel under Han river. This system will be very helpful to make the most of in-situ data and suggest proper applicability of tunnel reinforcement system developing more resonable tunnel support method from dependance of some experienced experts for the absent of guide.

  • PDF