DOI QR코드

DOI QR Code

Prediction Method and Characteristics of Micro-pressure Wave on High-speed Railway Tunnel

고속선 터널미기압파 특성 및 예측기법 연구

  • Received : 2014.07.15
  • Accepted : 2015.01.09
  • Published : 2015.02.28

Abstract

This paper describes a prediction method for micro-pressure wave emitted from a tunnel on the Kyung-bu high-speed railway. Pressure and micro-pressure wave were measured simultaneously to obtain some constants for the prediction method. The change of a micro-pressure wave were analyzed according to the speed of the train, the track bed type, and the distance from a tunnel portal. At a train speed of 300km/h, the micro-pressure wave of 4.0km long ballast track tunnel is about 7.5Pa; that of 3.3km long slab track tunnel is about 14.3Pa The strength of the micro-pressure wave decreases in inverse proportion to the distance and becomes about 0.5~1.0Pa at a point of 100m from the tunnel exit. Micro-pressure waves were predicted using the formula with the obtained the constants. Using a comparison between the predicted data and field measurement data, it was confirmed that micro-pressure wave can be predicted easily through the prediction formula.

본 논문은 경부고속선 터널에서 발생하는 미기압파 예측기법을 설명하였다. 미기압파 예측식에 필요한 계수를 도출하기 위하여 터널궤도유형에 따른 미기압파 변화를 알아보기 위하여 터널압력파 미기압파를 동시에 계측하였다. 열차속도, 터널궤도유형 그리고 출구로부터 거리에 따른 크기 변화를 분석하였다. 경부고속선 터널에서 발생하는 미기압파는 고속열차가 약 300kph로 진입할 때, 길이 4.0km의 자갈궤도터널에서는 약 7.5Pa 미기압파가 발생하며, 3.3km의 슬라브궤도터널에서는 약 14.3Pa의 미기압파가 발생한다. 그리고 터널출구에서 방사된 미기압파는 전파거리에 반비례하여 줄어들며, 100m 지점에서는 약 0.5~1.0Pa로 나타난다. 그리고 터널압력파 기울기를 이용하여 미기압파 예측식에 필요한 계수를 도출한 후, 예측식을 통해 미기압파 크기를 계산하였다. 계산된 미기압파 크기를 현장시험 결과값과 비교해 본 결과, 터널 미기압파 크기는 이론식을 이용하여 신속하게 예측할 수 있음을 확인하였다.

Keywords

References

  1. S.W. Nam, H.B. Kwon, S.H. Yun (2012) Characteristics method analysis of wind pressure of train running in tunnel, Journal of the Korean Society for Railway, 15(5), pp. 436-441. https://doi.org/10.7782/JKSR.2012.15.5.436
  2. H.B. Kwon, S.W. Nam, J.H. Kwak (2009) Assessment of the pressure transient inside the passenger cabin of high-speed train using computational fluid dynamics, Journal of the Korean Society for Railway, 12(1), pp. 65-71.
  3. J.M. Mok, K.Y. Choe, J. Yoo (1997) A study on tunnel entry design considering the booming noise resulting from micro-pressure wave, Journal of KSNVE, 7(6), pp. 959-966.
  4. D.H. Kim, D.H. Min (2001) Experimental study on the slit cover hood for reducing the micro pressure waves in high-speed train-tunnel interfaces, Transactions of KSME B, 25(6), pp. 758-765.
  5. 2year Report of 2nd Stage (2001) Aerodynamic design of high-speed railway tunnel and Development of tunnel hood for G7.
  6. S.H. Yun, S.W Nam, H.B. Kwon, S.S. Kim (2013) Investigation of micro-pressure emission from tunnel for high-speed train with field measurement, Proceeding of KSR 2013 fall conference, pp. 410-415.
  7. T. Maeda, T. Matsumura, K. Tanemoto, H. Kajiyama (1990) Countermeasures against Micro-pressure waves radiated from tunnel exit under speed-up of shinkansen(in Japanese), RTRI Report 4(1) pp. 44-51.
  8. S. Ozawa (1979) Studies of Micro-pressure wave Radiated from a Tunnel Exit, RTRI Report, No. 1121.
  9. S. Ozawa, K. Murata, T. Maeda (1997) Effect of ballasted track on distortion of pressure wave in tunnel and emission of micro-pressure wave, Proceeding of the 9th International Conference of Aerodynamics and ventilation of vehicle tunnels, BHR GROUP CONFERENCE SERIES PUBLICATION 27, pp. 935-950.
  10. T. Miyachi (2011) Theoretical model for micro-pressure wave emission considering the effect of topography around the tunnel portal, QR of RTRI, 52(2), pp. 117-122. https://doi.org/10.2219/rtriqr.52.117