DOI QR코드

DOI QR Code

A Basic Study on the Prediction of Collapse of Tunnels Using Artificial Neural Network

인공신경망 기법을 이용한 터널 붕괴 예측에 관한 기초 연구

  • Received : 2015.10.28
  • Accepted : 2016.01.30
  • Published : 2016.02.29

Abstract

Collapse of a tunnel can occur anytime, anywhere due to the special characteristics of tunnel structures and unexpected geological conditions during construction. Tunnel collapse will lead to economic losses and casualties. So various studies are continually being conducted to prevent economic losses, casualties and accidents. In this study, we analyzed data from 56 domestic construction tunnel collapse sites, and input factors to be applied to the artificial neural network were selected by the sensitivity analysis. And for the artificial neural network model design studies were carried out with the selected input factors and optimized ANN model to predict the type of tunnel collapse was determined. By using it, in 12 sites where tunnel collapse occurred applicability evaluation was conducted. Thus, the tunnel collapse type predictability was verified. These results will be able to be used as basic data for preventing and reinforcing collapse in the tunnel construction site.

터널에서의 붕괴는 터널 구조물의 특수성 및 예상치 못한 지반조건의 변화로 인해 언제 어디서든 발생될 수 있다. 그로 인한 경제적인 손실과 인명피해를 줄이기 위하여 사고를 미연에 방지하기 위한 방안에 대한 다양한 연구들이 계속 진행되고 있는 실정이다. 본 연구에서는 붕괴예측을 위하여 국내 터널 붕괴 현장 56개소의 시공데이터를 분석하고 인공신경망 기법에 적용할 입력인자를 민감도 분석으로 선정하였다. 또한 인공신경망 모델 설계는 선정된 입력인자로 학습을 수행하고 터널 붕괴 유형 예측에 최적화된 모델을 결정하였다. 이 모델을 이용하여 붕괴가 발생된 총 12개소에 적용성 평가를 실시하여 터널 붕괴 유형 예측 가능성을 검증하였다. 이러한 결과는 터널 시공 현장에서 붕괴 예방을 위한 기초 자료로서 활용 될 수 있을 것이다.

Keywords

References

  1. Anderson, J. (1997), "HSE Report on NATM Safety", Tunnel & Tunnelling, March, pp.49-51.
  2. Caudill, M. (1988), "Neural Networks Primer, Part III", AI EXPERT, 3(6), pp.53-59.
  3. Hwang, M.G. (2004), "Application of Artificial Neural Networks to Soil Flushing Method", Master's thesis, University of Myongji, pp.1-24.
  4. Jeong, Y.S. (2008), "Development of Tunnel Collapse Risk Index by Neural Network", Master's thesis, University of Hoseo, pp. 20-40.
  5. Kim, J.K. (2011), "A Case Study on the Estimation of a Proper Tunnel Support Pattern Using Back Analysis based on Artificial Neural Network, Doctoral thesis, University of Suwon, pp.20-27.
  6. Kim, Y.Y. (2011), "A Study on Quantified Management for Tunnel Construction Hazard based on KICT Tunnel Hazard Index (KTHIndex)", Master's thesis, University of Dongguk, pp.10-12.
  7. Korean Institutue of Construction Technology (2009), "Development of Technologies for Minimizing and Prevention the Disaster on Tunnel Construction VI", report, KICT 2009-071, pp.43-64.
  8. Korean Tunnelling Association (2010), "Case Histories of Tunnel Collapse", CIR, pp.93-263.
  9. Lee, S.B. and Im, Y.D. (2002), "Fuzzy Neural Network Genetic Evolution", INSOL MEDIA, pp.107-144.
  10. Lee, S.G., Kim, N.Y., and Jeon B.H. (2007), "A Study on the Collapse Pattern of Road Tunnel under Construction", The Journal of Engineering Geology, Vol.17, No.1, March, pp.115-123.
  11. Nam, K.M. (2008), "A Study on the Estimation of the Blast Vibration Velocity in the Structure Using the Artificial Neural Network", Master's Thesis, Chungnam National University, pp.21-52.
  12. Shin, H.S., Kwon, Y.C., Jung, Y.S, Bae, G.J., and Kim, Y.Y. (2009), "Methodology for Quantitative Hazard Assessment for Tunnel Collapses based on Case Histories in Korea", International Journal of Rock Mechanics and Mining Science, Vol.45, No.5, pp.1072-1087.

Cited by

  1. Prediction of Asphalt Pavement Service Life using Deep Learning vol.20, pp.2, 2018, https://doi.org/10.7855/IJHE.2018.20.2.057