• Title/Summary/Keyword: 터널 굴진면

Search Result 72, Processing Time 0.021 seconds

Rock Classification Prediction in Tunnel Excavation Using CNN (CNN 기법을 활용한 터널 암판정 예측기술 개발)

  • Kim, Hayoung;Cho, Laehun;Kim, Kyu-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.9
    • /
    • pp.37-45
    • /
    • 2019
  • Quick identification of the condition of tunnel face and optimized determination of support patterns during tunnel excavation in underground construction projects help engineers prevent tunnel collapse and safely excavate tunnels. This study investigates a CNN technique for quick determination of rock quality classification depending on the condition of tunnel face, and presents the procedure for rock quality classification using a deep learning technique and the improved method for accurate prediction. The VGG16 model developed by tens of thousands prestudied images was used for deep learning, and 1,469 tunnel face images were used to classify the five types of rock quality condition. In this study, the prediction accuracy using this technique was up to 83.9%. It is expected that this technique can be used for an error-minimizing rock quality classification system not depending on experienced professionals in rock quality rating.

Three-Dimensional Limit Equilibrium Stability Analysis of Spile-Reinforced Shallow Tunnel

    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.101-122
    • /
    • 1997
  • A spiting reinforcement system is composed of a series of radially installed reinforcing spites along the perimeter of the tunnel opening ahead of excavation. The reinforcing spill network is extended into the in-situ soil mass both radially and longitudinally The sailing reinforcement system has been successfully used for the construction of underground openings to reinforce weak rock formations on several occasions. The application of this spiting reinforcement system is currently extended to soft ground tunneling in limited occasions because of lack of reliable analysis and design methods. A method of threetimensional limit equilibrium stability analysis of the smile-reinforced shallow tunnel in soft ground is presented. The shape of the potential failure wedge for the case of smile-reinforced shallow tunnel is assumed on the basis of the results of three dimensional finite element analyses. A criterion to differentiate the spill-reinforced shallow tunnel from the smile-reinforced deep tunnel is also formulated, where the tunnel depth, soil type, geometry of the tunnel and reinforcing spites, together with soil arching effects, are considered. To examine the suitability of the proposed method of threedimensional stability analysis in practice, overall stability of the spill-reinforced shallow tunnel at facing is evaluated, and the predicted safety factors are compared with results from twotimensional analyses. Using the proposed method of threetimensional limit equilibrium stability analysis of the smile-reinforced shallow tunnel in soft ground, a parametric study is also made to investigate the effects of various design parameters such as tunnel depth, smile length and wadial spill spacing. With slight modifications the analytical method of threeiimensional stability analysis proposed may also be extended for the analysis and design of steel pipe reinforced multi -step grouting technique frequently used as a supplementary reinforcing method in soft ground tunnel construction.

  • PDF

Field Experiment on the Optimization of Concave-Shaped Face Development for Rapid Tunnel-Whole-Face Excavation (대단면 급속시공을 위한 최적의 곡면막장형상개발에 관한 현장실험)

  • Kim, Tae-hyoung;Yoon, Ji-sun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.1
    • /
    • pp.65-76
    • /
    • 2006
  • In this study, NATM can reduce the loosened ground near the tunnel face more than the other pre-existing tunnelling methods, because of rapid supporting by means of shotcrete and rock bolts. However, this method sometimes can not help for a unstable tunnel face with a unsupported caondition. In order to keep from that dangerous case, some excavation methods such as bench cut and drift advancing method are introduced, despite of high construction cost and period. So, this thesis is intended to introduce the new tunnel face shape, that is concave shaped face, and discusses its effects on the tunnel stabilization.

  • PDF

3D Finite Element Analysis of Rock Behavior with Bench Length and Gther Design Parameters of Tunnel (터널의 벤치길이를 중심으로 한 설계변수에 따른 암반거동의 3차원 수치해석)

  • 강준호;정직한;이정인
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.30-35
    • /
    • 2001
  • Focusing on the bench length, this paper presents the results of 3-dimensional elafto-plastic FE Analysis un tunnels of full face, mini-bench and short bench excavated in weathered rock. Influences of unsupported span, horizontal to vertical stress ratio, thickness of shotcrete on the behavior of rock and support were a1so studied. Results showed that displacements of mini-bench tunnels responded more sensitively to bench lengths than those of short bench. The effects of bench excavation on upper half displacement increased with longer unsupported span. Horizontal to vertical stress ratio showed a greater influence on displacement and preceding displacement ratio or sidewall rather than those of crown and invert.

  • PDF

Dead Pressure and its measures of Emulsion Explosives at Small Sectional Tunnel (소단면 터널에서 에멀젼폭약의 사압현상과 대책)

  • Min, Hyung-Dong;Jeong, Min-Su;Jin, Yeon-Ho;Park, Yun-Suk
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.29-37
    • /
    • 2008
  • In general, the size of tunnel cross section in construction site is $50{\sim}200m^2$. But, electric cable tunnel, telecommunication cable tunnel, mine tunnel. Waterproof tunnel have small cross section less than $20m^2$. There are so many problem at small sectional tunnel: restriction of equipment, dead pressure by precompression, loss of efficiency, increase of work time. Especially, explosives remainder by precompression of previous detonation is serious problem. To find its measures of dead pressure (explosives remainder), the following series of progress have been conducted: (1) survey of previous study (2) investigate causes of dead pressure (3) set up of its measures (4) application and appraisal at tunnel site. The measures, change of cut pattern, hole space over 40cm, adjustment of delay time, are proved by experimental results.

Application of TBM for Mining and Energy Resources Development (광물과 에너지자원 개발을 위한 TBM 활용사례)

  • Ko, Tae Young;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.460-468
    • /
    • 2021
  • A TBM is an equipment that excavates a tunnel with a full face by rotating a circular cutter head and its advantages are fast excavation rate and safe construction. A TBM, which is primarily used for tunnel excavation on civil construction sites, is easily adaptable to information and communication technology. Research related to unmanned and automated technology is being actively pursued. TBM applications for mining and energy resource development in other countries were investigated in this study. The difference of TBM applications between the mining and energy resource development and civil construction sites was examined. Technical factors such as geological conditions, depth, site access, TBM launching, alignment and inclination, TBM size, and others that should be considered when choosing a TBM were investigated. Finally, the advantages and disadvantages of TBM application in mines and the technical requirements for TBM for successful mine application are summarized.

Survey of the Geology and Geological Structure of the Foundations at a Construction Site for Tram (경전철 건설구간의 지질 및 지질구조특성에 관한 지반조사)

  • Lee, Byung-Joo;SunWoo, Chun;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.329-338
    • /
    • 2010
  • The foundation area for tram contains biotite gneiss, quartzo-feldspathic gneiss, calc-silicate rock, and porphyroblastic gneiss of the pre-Cambrian Kyeonggi gneiss complex. These rocks record at least three stages of deformation, as indicated by fold sets of contrasting orientations (D1-D3). Joints are generally steeply dipping and strike NW-SE to WNW-ESE. The Gonjiam Fault, which strikes WNW-ESE, follows a river in the area. The fault possesses a 3-m-wide fracture zone, a 10-m-wide damage zone, and is 15 km long. Two tunnels have been constructed through the biotite gneiss. The geometric relationship between discontinuities (e.g., joints and foliation) and tunneling direction reveals that set 3 of the AA tunnel is unstable but that BB tunnel is relatively safe.

A Study on the Behavior of Surface Settlement due to the Excavation of Twin TBM Tunnels in the Clay Grounds (점토지반에서 TBM 병렬터널 굴진 시 지표침하거동에 대한 연구)

  • You, Kwangho;Jung, Suntae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.29-40
    • /
    • 2019
  • Mechanized constructions have been frequently increased in soft ground below sea bed or river bed, for urban tunnel construction, and for underpinning the lower part of major structures in order to construct a safer tunnel considering various risk factors during the tunnel construction. However, it is difficult to estimate the subsidence behavior of the ground surface due to excavation and needs to be easily predicted. Thus, in this study, when a twin tunnel is constructed in the soft ground, it is proposed a simpler equation relating to the settlement behavior and a corrected formula applicable to soft ground and large diameter shield tunnels based on the previously proposed theory by Peck (1969). For this purpose, it was analyzed to long-term measurement values such as the amount of maximum settlement, the subsidence range by ground conditions, and interference volume loss due to the parallel construction, etc. As a result, a equation was suggested to predict the amount of maximum settlement in the soft sediment clay ground where is located at the upper part of the excavation site. It is turned out that the proposed equation is more suitable for measurement data in Korea than Peck (1969)'s.

Application of x-MR control chart on monitoring displacement for prediction of abnormal ground behaviour in tunnelling (터널 시공 중 이상 거동 예측을 위한 계측 변위의 x-MR 관리도 활용)

  • Yun, Hyun-Seok;Song, Gyu-Jin;Shin, Young-Wan;Kim, Chang-Yong;Choo, Seok-Yeon;Seo, Yong-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.5
    • /
    • pp.445-458
    • /
    • 2014
  • The displacement data monitored during tunnel construction play a crucial role in predicting the behaviour of ground around and ahead of excavation face. However, the management criteria for monitoring data are not well established especially for the reliable analysis on varying aspect of displacement data along with chainage. In this study, we evaluated the applicability of x-MR control chart method, which is kind of applied statistical management method, for the analysis of displacement monitoring data in terms of prediction of possible collapse or induced cracks. As a result, a possible abnormal behaviour could be predicted beforehand at 5 ~ 13 m ahead or on at least one day before it occurred by using x-MR control chart method. In addition, it is noted that the moving range for the x-MR control chart should be set to 5~10 for this purpose.

A study on EPB shield TBM face pressure prediction using machine learning algorithms (머신러닝 기법을 활용한 토압식 쉴드TBM 막장압 예측에 관한 연구)

  • Kwon, Kibeom;Choi, Hangseok;Oh, Ju-Young;Kim, Dongku
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.217-230
    • /
    • 2022
  • The adequate control of TBM face pressure is of vital importance to maintain face stability by preventing face collapse and surface settlement. An EPB shield TBM excavates the ground by applying face pressure with the excavated soil in the pressure chamber. One of the challenges during the EPB shield TBM operation is the control of face pressure due to difficulty in managing the excavated soil. In this study, the face pressure of an EPB shield TBM was predicted using the geological and operational data acquired from a domestic TBM tunnel site. Four machine learning algorithms: KNN (K-Nearest Neighbors), SVM (Support Vector Machine), RF (Random Forest), and XGB (eXtreme Gradient Boosting) were applied to predict the face pressure. The model comparison results showed that the RF model yielded the lowest RMSE (Root Mean Square Error) value of 7.35 kPa. Therefore, the RF model was selected as the optimal machine learning algorithm. In addition, the feature importance of the RF model was analyzed to evaluate appropriately the influence of each feature on the face pressure. The water pressure indicated the highest influence, and the importance of the geological conditions was higher in general than that of the operation features in the considered site.