• Title/Summary/Keyword: 터널시공관리

Search Result 214, Processing Time 0.027 seconds

Influences of Grouting Pressure of Microcement to Upper Structures (지반보강용 마이크로시멘트의 주입압이 상부구조물에 미치는 영향)

  • Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.70-77
    • /
    • 2010
  • Microcement grouting and micro pile are frequently used for ground modification during tunnel construction. The influence of grouting pressure of microcement grouting and micro pile to the existing bridge which is directly over the constructing tunnel is investigated. Three dimensional seepage flow-structure interactive analysis considering firm water pressure with full stages of construction including the construction of upper bridge, microcement grouting, micro pile and tunnel is performed. The settlement and tilting of the pier of existing bridge violate the design code and the reaction of the bridge are highly increased after grouting. The stress of tunnel bracings such as rockbolt and shotcrete also exceed the limit of the code. The pressure of microcement grouting is confined by bedrock and transmit to the surrounded soil and the upper bridge. Microcement grouting needs mid-high pressure to penetrate through weak fault plane and the pressure greatly influence the safety of the upper structure. It is important to decide and care the grouting pressure to improve weak fault plane directly under the existing structures and the pressure of microcement grouting should be considered in underground analysis.

A Case Study of Soil-Cement Fill for Tunneling (소일시멘트 복토후 터널굴착에 대한 사례 연구)

  • Shin Il-Jae;Kang Jun-Ho;Suh Young-Ho
    • Tunnel and Underground Space
    • /
    • v.15 no.5 s.58
    • /
    • pp.359-368
    • /
    • 2005
  • In case the overburden of a tunnel is too low to adopt NATM, cut and cover method generally can be chosen as alternative. However, in tunneling some area with very low or no overburden between two mountains, the cut and cover method requires additional construction of a couple of tunnel portals and the maintenance of portal slopes until backfilling is completed. As a solution for this problem, increasing the tunnel overburden by raising the ground level can be effective. This paper presents the case study for tunneling at C240 site in Taiwan High Speed Railway(THSR) in which soil-cement filling method was used for pre-banking before tunnel excavation. Cement content of filling material was $2\~4\%$ and thickness of filling a round was $130\~250\;mm$. The stability evaluation for the soil-cement slope and concrete lining of low cover tunnel was conducted by numerical analysis.

Application of BIM technologies for maintenance of subway structures (지하철 구조물 유지관리를 위한 BIM 기술 활용)

  • Shim, Chang-Su;Kim, Seong-Wook;Yun, Nu-Ri;Song, Hyun-Hye
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.91-94
    • /
    • 2011
  • 시설물 전생애주기에 걸쳐 정보가 공유되고 피드백 될 수 있는 BIM(Building Information Modeling) 기술의 등장은 유지보수 관리자들에게 가장 필요한 유지관리점검 도구의 의미를 지님과 동시에, 정보모델을 기반으로 주요 기술영역 및 사업주체간 원활한 의사소통이 가능해지도록 한다. 효율적인 지하철 터널의 유지관리를 위해서는 체계적으로 조직된 데이터가 필수적이다. 설계, 시공, 유지관리 단계별로 효과적인 협업을 위한 유기적인 단일 모델이 요구된다. BIM기반의 지하철 터널 구조물의 유지관리를 위해 건설정보분류체계 및 이를 보안한 유지관리점검 표준분류체계를 적용한 정보모델을 개발하였다.

  • PDF

Management and concept of the monitoring system considering the characteristics of subsea tunnels (해저터널의 특성을 고려한 계측 개념 및 관리 방안)

  • Park, Eui-Seob;Shin, Hee-Soon;Cheon, Dae-Sung;Jung, Yong-Bok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.5
    • /
    • pp.523-536
    • /
    • 2013
  • In order to ensure the safety of the subsea tunnel during its construction and operation, unlike the underground structures on land, the special monitoring system is essential which considers the characteristics of subsea tunnels in addition to conventional stress and displacement measurements applied to existing land tunnels. Therefore, the concept applied to NATM is reorganized to evaluate the stability of subsea tunnels. And the observation system for making a monitoring plan, the critical strain theory for tunnel safety management and MS monitoring methods for detecting the local failure and crack initiation of rock and supports, are introduced. Finally, the scheme of monitoring and management for subsea tunnels by using these methods is suggested.

A study on critical strain based damage-controlled test for the evaluation of rock tunnel stability (암반터널 안정성 평가를 위한 손상제어실험 기반의 한계변형률에 관한 연구)

  • Lee, Kang-Hyun;Kim, Do-Hoon;Park, Jeong-Jun;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.501-517
    • /
    • 2011
  • In general, the tunnel stability during excavation is assessed by comparing measured displacements at roof and sidewall to control criteria. The control criteria were established based on the past experience that considered ground conditions, size of the tunnel cross section, construction method, supports, etc. Therefore, a number of researches on the control criteria using the critical strain have been conducted. However, the critical strain obtained from uniaxial compression tests have drawbacks of not taking damage in rock mass due to increase of stress level and longitudinal arching into account. In this paper, damage-controlled tests simulating stress level and longitudinal arching during tunnel excavation were carried out in addition to uniaxial compression tests to investigate the critical strain characteristics of granite and gneiss that are most abundant rock types in Korean peninsula. Then, the critical strains obtained from damage-controlled tests were compared to those from uniaxial compression tests; the former showed less values than the latter. These results show that the critical strain obtained from uniaxial compression tests has to be reduced a little bit to take stress history during tunnel excavation into account. Moreover, the damage critical strain was proposed to be used for assessment of the brittle failure that usually occurs in deep tunnels.

Management of Risk Scenarios based on Ground Conditions under Construction of a Subsea Tunnel (해저터널 시공중 지반조건별 위험 시나리오 관리기법)

  • Park, Eui-Seob;Shin, Hee-Soon;Shin, Yong-Hoon;Kim, Taek-Gon
    • Tunnel and Underground Space
    • /
    • v.19 no.4
    • /
    • pp.275-286
    • /
    • 2009
  • In order to establish the causes and measures for technical risks that occur in various ground conditions when a subsea tunnel is excavated, it is important to configure expected risk scenarios. In addition, when the risk scenarios are classified because the scenario that occurs along all tunnel route and the scenario limited to some area are considered together, a logical framework with systematic and organized responses can be provided for project managements. In this research, project risk scenarios and management elements were configurated, and the project schedule was established for the management techniques to the risk scenario. The risk scenarios expected in a subsea tunnel were classified into a common risk scenario and a special risk scenario, and the concept which can combine with the project management elements was derived.

Application of resistivity monitoring with tunnel excavation area (터널 굴착에 따른 전기비저항 모니터링 기술 적용)

  • Ahn, Hee-Yoon;Jeong, Jae-Hyeung;Cho, In-Ky;Kim, Jung-Ho;Rae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.405-420
    • /
    • 2008
  • Resistivity survey is one of the widely used methods for the investigation of stability of the ground or bedrock around tunnel and is also used as an essential base data for stability and reduction of construction cost through first-hand approximation of rock quality at design step. Generally, the analysis of resistivity survey data is performed by single measurement. When distribution variation of groundwater around a tunnel over time is necessary for maintenance of a tunnel, resistivity monitoring is very useful survey method to grasp distribution variation of groundwater. So we performed the grid line resistivity survey to monitoring resistivity variation for six times. And we also tried to evaluate application possibility of the resistivity monitoring for construction safety through providing detailed information on fault zones.

  • PDF

Development of 3D absolute displacement monitoring system and its application at the stage of tunnel construction (터널 시공 중 3차원 절대변위 계측시스템의 개발과 적용)

  • Bang, Joon-Ho;Kim, Ki-Young;Jong, Yong-Hun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.3
    • /
    • pp.229-240
    • /
    • 2007
  • The 3D absolute displacement monitoring system has been developed to analyze the tunnel convergence measured under construction of underground structures and to manage effectively the measured data. The system is comprised of the total station, the anchor-typed target pin and the 3D absolute displacement measurement and management program. In this paper, the types and specifications of the 3D total station were presented. The anchor-typed target pin, an improved model of traditional one, was developed and its sightable distance and measurement accuracy were checked by field tests. Also a 3D absolute displacement measurement and management program, TEMS 3D, was developed to provide some analysis tools including the trend and influence lines. L/C ratio, S/C ratio and the like. The developed system was applied the construction stage of a railway tunnel for testing purpose. It is verified that the developed system is capable of predicting weak zones ahead of tunnel face by comparing with results of TSP (Tunnel Seismic Prediction) survey.

  • PDF

Deformation Analysis of a Shallow NATM Tunnel using Strain Softening Model and Field Measurement (변형률 연화모델과 현장계측을 이용한 저토피 NATM터널의 변형해석)

  • Lee, Jaeho;Kim, Youngsu;Moon, Hongduk;Kim, Daeman;Jin, Guangri
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.29-36
    • /
    • 2007
  • The control and prediction of surface settlement, gradient and ground displacement are the main factors in urban tunnel construction. This paper carried out the estimation and prediction of ground behavior around tunnel due to excavation using computational method and case study in detail for the analysis of deformation behavior in urban NATM tunnel. Computational method was performed by FLAC-2D with strain softening model and elastic plastic model. Field measurements of surface subsidence and ground displacement were adopted to monitor the ground behavior resulting from the tunneling and these values were applied to modify tunnel design parameters on construction.

  • PDF

A study on pilot Test of the Composition Presplitting Angle Cut method in tunnel blasting (터널 심발부의 선균열을 이용한 발파공법의 현장시험에 관한 연구)

  • Hwang, Hak;Lee, Tai Ro
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.4
    • /
    • pp.287-300
    • /
    • 2002
  • Composition Presplitting Angle Cut (COPA-Cut) is a newly developed blasting method for tunnel excavation. Contrary to existing methods, COPA-Cut first creates presplitting by tension crack in cut. In this study, field tests measuring the advance efficiency, noise and ground vibration were performed in order to verify the presplitting effect. To compare the economy and workability, tests were simultaneously performed by COPA-Cut and existing method on the same condition. Results show that COPA-Cut increased advance efficiency and decreased noise and ground vibration. Also, it was confirmed that COPA-Cut is superior to existing method in terms of economy, workability and quality control.

  • PDF