• Title/Summary/Keyword: 터널링 자기저항

Search Result 40, Processing Time 0.034 seconds

Effects of Morphology on Nanostructured Superconducting Thin Film (나노구조 박막의 Morphology에 따른 초전도 특성 변화에 관한 연구)

  • Kouh, Tae-Joon
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.71-74
    • /
    • 2006
  • Transport and tunneling measurements of nanostructured superconducting thin films are presented. To understand the effects of film morphology on their superconducting properties, thermal annealing experiments have been performed. The transition temperature increases with thermal annealing temperature towards the bulk value. Also, thermal annealing results in a shift of transverse phonon mode. These can be understood with changes in film morphology and suggest its importance on the superconducting state properties.

Rapid Theraml Annealing Effect on the Magnetic Tunnel Junction with MgO Tunnel Barrier (MgO 절연막을 갖는 자기 터널 접합구조에서의 급속 열처리 효과)

  • Min, Kiljoon;Lee, Kyungil;Kim, Taewan;Jang, Joonyeon
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.2
    • /
    • pp.47-51
    • /
    • 2015
  • To achieve a high tunneling magneto resistance (TMR) of sputtered magnetic tunnel junctions (MTJs) with an MgO barrier, the annealing process is indispensable. The structural and compositional changes as consequences of the annealing greatly affect the spin-dependent transport properties of MTJs. Higher TMR could be obtained for MTJs annealed at higher annealing temperature. The diffusion of Ru, Mn and/or Ta in the MTJs may occur during annealing process, which is known to be detrimental to spin-dependent tunneling effect. The rapid thermal annealing (RTA) process was used for annealing the MTJs with synthetic antiferromagnets. To suppress the diffusion of Mn, Ru and/or Ta in the MTJs, the process time and temperature of RTA were minutely controlled.

Colossal magnetoresistance of double-ordered perovskite $Sr_{2}FeMoO_{6}$ ceramics and sputter-deposited films ($Sr_{2}FeMoO_{6}$ 소결체와 스퍼터링법으로 제조된 박막의 초거대자기저항현상에 관한 연구)

  • 이원종;장원위
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.1
    • /
    • pp.36-41
    • /
    • 2002
  • Abstract The stoichiometric and double-ordered perovskite $Sr_2FeMoO_6$ (SFMO) polycrystalline ceramics were fabricated by sintering at above $900^{\circ}C$ in $H_2$(5%)/Ar reductive ambient. SMO polycrystals showed good ferromagnetic properties andmagnetrotesistqnce ratios of about 15 % at 8K and 3 % at room temperature. Amorphous SFMO thin films were deposited on $LaA1O_3$ and $SrTiO_3$ single crystal substrates using rf sputtering method with the SFMO polycrystalline ceramic target. Double-ordered perovskite polycrystalline SFMO thin films were fabricated by solid state crystallization by annealing the deposited amorphous films at above $680^{\circ}C$ in $H_2$(5%)/Ar reductive ambient. SFMO thin films exhibited ferromagnetic behavior. Their magnetroresistance ratios, however, were only 0.3~0.5% at 8K and disappeared with increasing the measuring temperature. This was attributed to the absence of magnetic spin tunneling between grains due to the porous structure and non-stoichiometric composition of the deposited films.

A Study on Temperature Dependence of Tunneling Magnetoresistance on Plasma Oxidation Time and Annealing Temperature (플라즈마 산화시간과 열처리 조건에 따른 터널링 자기저항비의 온도의존특성에 관한 연구)

  • Kim, Sung-Hoon;Lee, Seong-Rae
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.3
    • /
    • pp.99-104
    • /
    • 2004
  • We have studied to understand the barrier and interface qualities and structural changes through measuring temperature dependent spin-polarization as functions of plasma oxidation time and annealing time. Magnetic tunnel junctions consisting of SiO2$_2$/Ta 5/CoFe 17/IrMn 7.5/CoFe 5/Al 1.6-Ox/CoFe 5/Ta 5 (numbers in nm) were deposited and annealed when necessary. A 30 s,40 s oxidized sample showed the lowest spin-polarization values. It is presumed that tunneling electrons were depolarized and scattered by residual paramagnetic Al due to under-oxidation. On the contrary, a 60s, 70 s oxidized sample might have experienced over-oxidation, where partially oxidized magnetic dead layer was formed on top of the bottom CoFe electrode. The magnetic dead layer is known to increase the probability of spin-flip scattering. Therefore it showed a higher temperature dependence than that of the optimum sample (50 s oxidation). temperature dependence of 450 K annealed samples was improved when the as-deposited one compared. But the sample underwent 475 K and 500 K annealing exhibits inferior temperature dependence of spin-polarization, indicating that the over-annealed sample became microstucturally degraded.

Random Access Memory utilizing Spin Tunneling Giant Magnetoresistance Effect (스핀 터널링 거대자기저항 효과를 이용한 랜덤 엑세스 메모리)

  • 박승영;최연봉;조순철
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.950-953
    • /
    • 1999
  • Spin tunneling giant magnetoresistance effect was studied to utilize in the application of random access memory. Ferromagnetic/Insulator/Ferromagnetic films were sputtered on glass substrates and perpendicular current was applied. Measurements of magneto- resistance of the junction showed 8.6% of MR ratio. Voltage output depends on the magnetization directions of the write line and read line, thus enabling the system to be used as a random access memory

  • PDF

Tunneling Magnetoresistance of a Ramp Edge Junction with $SrTiO_3$ Barrier Layer ($SrTiO_3$ 장벽층을 이용한 경사형 모서리 접합의 터널링 자기저항 특성연구)

  • Lee, Sang-Suk;Kim, Young-Il;Hwang, Do-Guwn;Kim, Sun-Wook;Kungwon Rhie;Rhee, Jang-Roh
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.174-175
    • /
    • 2002
  • A ramp-type tunneling magnetoresistance (TMR) junction having structure NiO(60 nm)/pinned Co(10 nm)MiO(60 nm)/barrier SrTiO$_3$(2-10 nm)/free NiFe(10 nm) with the 15 degree slope was investigated. We obtained nonlinear I(V) characteristics for ramp-type tunneling junctions that have distinctive difference with and without applied magnetic field. In the barrier SrTiO$_3$ thickness of 4 nm, the TMR was about 52% at a bias voltage of 50 mV. (omitted)

  • PDF

Investigation on the Free Layer Switching behavior of a Spin-valve MTJ Device with 2 Dimensional Magnetic Field (2차원 자기장에 의한 spin-valve 터널링 자기저항 소자의 자유층 반전 거동에 관한 연구)

  • Lee, Young-Woo;Kim, Cheol-Gi;Kim, Chong-Oh
    • Korean Journal of Materials Research
    • /
    • v.13 no.6
    • /
    • pp.394-397
    • /
    • 2003
  • MTJ devices are fabricated using metal shadow masks and switching characteristics are investigated under 2 dimensional magnetic field. When the hard axis field is less than $\pm$ 16 Oe, switching behavior is similar to that based on the Stoner-Wohlfarth model. As the hard axis field is larger than $\pm$ 16 Oe, deviation from the expectation by Stoner-Wohlfarth model is observed. These phenomena are induced by the generation of multi-domain and inhomogeneous magnetization reversal.

Tunnel Magnetoresistance with Top Layer Plasma Oxidation Time in Doubly Oxidized Barrier Process (이중 절연층 공정에서 상부절연층의 산화시간에 따른 터널자기저항 특성연구)

  • Lee, Ki-Yung;Song, Oh-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.3
    • /
    • pp.99-102
    • /
    • 2002
  • We fabricated TMR devices which have doubly oxidized tunnel barrier using plasma oxidation method to form homogeneously oxidized AlO tunnel barrier. We sputtered 10 $\AA$-bottom Al layer and oxidized it with oxidation time of 10 sec. Subsequent sputtering of 13 $\AA$-Al was performed and the metallic layer was oxidized for 50, 80, and 120 sec., respectively. The electrical resistance changed from 500 Ω to 2000 Ω with increase of oxidation time, while variation of MR ratio was little spreading 27∼31 % which is larger than that of TMR device of ordinary single tunnel barrier. We calculated effective barrier height and width by measuring I-V curves, from which we found the barrier height was 1.3∼1.8 eV sufficient for tunnel barrier, and the barrier width (<15.0 $\AA$) was smaller than physical thickness. Our results may be caused by insufficient oxidation of Al precursor into A1$_2$O$_3$. However, doubly oxidized tunnel barriers were superior to conventional single tunnel barrier in uniformity and density. Our results imply that we were able to improve MR ratio and tune resistance by employing doubly oxidized tunnel barrier process.

Soft Magnetoresistive Properties of Conetic Thin Film Depending on Ta Buffer Layer (버퍼층 Ta에 의존하는 코네틱 박막의 연자성 자기저항 특성)

  • Choi, Jong-Gu;Hwang, Do-Guwn;Lee, Sang-Suk;Choi, Jin-Hyub;Lee, Ky-Am;Rhee, Jang-Rho
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.6
    • /
    • pp.197-202
    • /
    • 2009
  • The property of soft magnetism for the Corning glass/non-buffer or buffer Ta/Conetic(NiFeCuMo)/Ta prepared by the ion beam deposition sputtering was studied. The effect of crystal property and post annealing treatment depending on the thickness of Conetic thin films was investigated. The coercivities of Conetic thin films with easy and hard direction along to the applying magnetic field during deposition were compared with each other. The coercivity and magnetic susceptibility of Ta(5 nm)/Conetic(50 nm) thin film were 0.12 Oe and 1.2 ${\times}\;10^4$, respectively. From these results, firstly, the Conetic thin film was more soft magnetism thin film than other one such as permalloy NiFe. Secondly, the usage of soft magnetism Conetic thin film for GMR-SV (giant magneoresistance-spin valve) or MTJ (Megnetic Tunnel Junction) structure in a low magnetic field can be possible.

Local Investigation and Magnetoresistance Properties of Co-Fe/Al-N/Co-Fe Tunnel Junctions Nitrided by Microwave-excited Plasma (질화법으로 제작한 강자성 터널링 접합의 국소전도 및 자기저항 특성)

  • Yoon Tae Sick;Tsunoda Masakiyo;Takahashi Migaku;Park Bum Chan;Lee Young-Woo;Li Ying;Kim Chong Oh
    • Korean Journal of Materials Research
    • /
    • v.14 no.3
    • /
    • pp.191-195
    • /
    • 2004
  • Tunnel junctions with AI-N barriers fabricated by microwave-excited plasma were studied. When the Al thickness, nitridation time, and annealing temperature were 1 nm (0.8 nm), 50 s (35 s), and $280^{\circ}C$ ($300^{\circ}C$), TMR ratio and resistance-area product (RA) were 49% (34%) and $3 ${\times}$ 10^4$ $\Omega$$\mu\m^2$ ($1.5 ${\times}$ 10^4$ $\Omega$$\mu\m^2$), respectively. In order to clarify the annealing temperature dependence of TMR ratio, the local transport properties were measured for Ta 5 nm/Cu 20 nm/Ta 5 nm$29_{76}$ $Fe_{24}$ 2 nm/Cu 5 nm/M $n_{75}$$Ir_{25}$ 10 nm/ $Co_{71}$ $Co_{29}$ 4nm/Al-N junction with Al thickness of 0.8 nm and nitridation time of 35s at various temperatures. The increase of TMR ratio after annealing at $300^{\circ}C$, where the TMR ratio of the corresponding MTJ had the maximum value of 34%, can be well explained by the enhancement of the average barrier height ($\Phi_{ave}$) and the reduction of its fluctuation. After further annealing at $340^{\circ}C$, the leakage current was observed and the TMR ratio decreaseded