Browse > Article
http://dx.doi.org/10.4283/JKMS.2015.25.2.047

Rapid Theraml Annealing Effect on the Magnetic Tunnel Junction with MgO Tunnel Barrier  

Min, Kiljoon (Korea Research Institute of Standards and Science)
Lee, Kyungil (Nano Advanced Materials Engineering, Sejong University)
Kim, Taewan (Nano Advanced Materials Engineering, Sejong University)
Jang, Joonyeon (Korea Institute of Science and Technology)
Abstract
To achieve a high tunneling magneto resistance (TMR) of sputtered magnetic tunnel junctions (MTJs) with an MgO barrier, the annealing process is indispensable. The structural and compositional changes as consequences of the annealing greatly affect the spin-dependent transport properties of MTJs. Higher TMR could be obtained for MTJs annealed at higher annealing temperature. The diffusion of Ru, Mn and/or Ta in the MTJs may occur during annealing process, which is known to be detrimental to spin-dependent tunneling effect. The rapid thermal annealing (RTA) process was used for annealing the MTJs with synthetic antiferromagnets. To suppress the diffusion of Mn, Ru and/or Ta in the MTJs, the process time and temperature of RTA were minutely controlled.
Keywords
MgO; magnetic tunnel junction(MTJ); tunneling magneto resistance(TMR); rapid thermal anneal; magnetic random access memory(MRAM);
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Heide and R. J. Elliott, Europhys. Lett. 50, 271 (2000).   DOI   ScienceOn
2 W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. MacLaren, Phys. Rev. B 63, 054416 (2001).   DOI
3 Mathon and A. Umerski, Phys. Rev. B 63, 220403 (2001).   DOI   ScienceOn
4 S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura, and H. Ohno, Appl. Phys. Letts. 93, 082508 (2008).   DOI   ScienceOn
5 J. S. Williams, "Solid phase epitaxial regrowth phenomena in silicon", Nuclear Instruments and Methods in Physics Research, Volumes 209-210, Part 1, 1 May 1983-15 May 1983.
6 B. D. cullity, "Introduction to Magnetic Materials", p. 215.
7 C. Park, J. Zhu, M. T. Moneck, Y. Peng, and D. E. Laughlin, J. Appl. Phys. 99, 08A901 (2006).
8 J. Hayakawa, S. Ikeda, Y. M. Lee, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 89, 232510 (2006).   DOI   ScienceOn
9 W. G. Wang, J. Jordan-sweet, G. X. Miao, C. Ni, A. K. Rumaiz, L. R. Shah, X. Fan, P. Parsons, R. Stearrett, E. R. Nowak, J. S. Moodera, and J. Q. Xiao, Appl. Phys. Lett. 95, 242501 (2009).   DOI   ScienceOn
10 C. Park, J. Zhu, M. T. Moneck, Y. Peng, and D. E. Laughlin, J. Appl. Phys. 99, 08A901 (2006).   DOI
11 J. Y. Bae, W. C. Lim, H. J. Kim, T. D. Lee, K. W. Kim, and T. W. Kim, J. Appl. Phys. 99, 08T316 (2006).   DOI