• Title/Summary/Keyword: 터널거동

Search Result 996, Processing Time 0.025 seconds

Research Trend of DFN Modeling Methodology: Representation of Spatial Distribution Characteristics of Fracture Networks (DFN 모델링 연구 동향 소개: 균열망의 공간적 분포 특성 모사를 중심으로)

  • Jineon, Kim;Jiwon, Cho;iIl-Seok, Kang;Jae-Joon, Song
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.464-477
    • /
    • 2022
  • DFN (discrete fracture network) models that take account of spatial variability and correlation between rock fractures have been demanded for analysis of fractured rock mass behavior for wide areas with high reliability, such as that of underground nuclear waste repositories. In this regard, this report describes the spatial distribution characteristics of fracture networks, and the DFN modeling methodologies that aim to represent such characteristics. DFN modeling methods have been proposed to represent the spatial variability of rock fractures by defining fracture domains (Darcel et al., 2013) and the spatial correlation among fractures by genetic modeling techniques that imitate fracture growth processes (Davy et al., 2013, Libby et al., 2019, Lavoine et al., 2020).These methods, however, require further research for their application to field surveys and for modeling in-situ rock fracture networks.

Grain-Based Distinct Element Modeling of Thermoshearing of Rock Fracture: DECOVALEX-2023 Task G (입자기반 개별요소모델을 이용한 암석 균열의 Thermoshearing 거동 해석: 국제공동연구 DECOVALEX-2023 Task G)

  • Jung-Wook, Park;Li, Zhuang;Jeong Seok, Yoon;Chan-Hee, Park;Changlun, Sun;Changsoo, Lee
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.568-585
    • /
    • 2022
  • In the present study, we proposed a numerical method for simulating thermally induced fracture slip using a grain-based distinct element model (GBDEM). As a part of DECOVALEX-2023, the thermo-mechanical loading test on a saw-cut rock fracture conducted at the Korea Institute of Civil Engineering and Building Technology was simulated. In the numerical model, the rock sample including a saw-cut fracture was represented as a group of random Voronoi polyhedra. Then, the coupled thermo-mechanical behavior of grains and their interfaces was calculated using 3DEC. The key concerns focused on the temperature evolution, thermally induced principal stress increment, and fracture normal and shear displacements under thermo-mechanical loading. The comparisons between laboratory experimental results and the numerical results revealed that the numerical model reasonably captured the heat transfer and heat loss characteristics of the rock specimen, the horizontal stress increment due to constrained displacement, and the progressive shear failure of the fracture. However, the onset of the fracture slip and the magnitudes of stress increment and fracture displacement showed discrepancies between the numerical and experimental results. We expect the numerical model to be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated in further study.

An Estimate of Ballast Track Condition on Dynamic Behavior of Railway Bridge (철도교량의 동적거동 특성을 고려한 자갈도상궤도의 상태추정에 관한 연구)

  • Kweon, Oh-Soon;Choi, Jung-Youl;Kang, Myoung-Seok;Lee, Hee-Up;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.480-493
    • /
    • 2007
  • Many railway-advanced countries are using the various types of track to reduce the track maintenance and repair cost according to the improvement of velocity. It spends on much maintenance and repair cost for ballast track due to abrasion of ballast, track irregularity and unisotropical ballast-support stiffness. The ballast track on railway bridge is accelerating the deterioration of ballast according to interaction of railway bridge and track. As continuing the deterioration, it is caused dynamic loads. Due to these effects, it increases negative loads of track and bridge. However, when designing the railway bridge, the effect of ballast track was applicate only dead load, so elastic behavior effect of ballast track is not influenced. Therefore, this paper presumes the stiffness of ballast track on railway bridge considering dynamic behavior of railway bridge, it was evaluated that effect on dynamic behaviors of railway bridge according to ballast track stiffness.

  • PDF

A study on asymmetric load on circular shaft due to engineering characteristics of discontinuous rock masses (불연속암반의 공학적 특성에 따른 원형수직구 편하중에 관한 연구)

  • Shin, Young-Wan;Moon, Kyoung-Sun;Joo, Kyoung-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.119-128
    • /
    • 2008
  • In the case of a circular shaft, it is expected that asymmetric loads should apply on the surface rather than symmetric loads due to geographical factors and the non-homogeneity of the jointed rock masses. In this study, discontinuous numerical analysis was carried in order to analyze the characteristics of asymmetric load distribution on the wall of the circular shaft due to anisotropy caused by heterogeneity of rock masses affected by the discontinuities like as a Joint. And it was also analyzed that the effect of the mechanical properties varied with the rock mass rating and horizontal stress with depth had influence in the asymmetric load on the wall of the shaft. In the case of considering the effect of the joint as variable, asymmetric load ratio $(R_p)$, which was defined as the ratio of the load subtracted minimum from maximum to minimum, was below 25% in the hard rock. As regarding the variation of the rock mass rating with depth as variable, the value of $R_p$ was below than 25% in the hard rock, and the value between 30% and 40% in the soft rock. On the other hand, the $R_p$ of fractures rock was between $45{\sim}50%$ which value was much higher than that in better rock mass rating.

  • PDF

Evaluation of Rock Damage Zone Using Seismic Logging Method (탄성파 점층법을 이용한 암반손상대 평가)

  • Kang Seong-Seung;Hirata Atsuo;Obara Yuzo;Haraguchi Naoyuki
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.50-57
    • /
    • 2006
  • Development of structures such as slope and tunnel, waste disposal, oil and LPG storages, and underground power house and so on, is increasing with the year. The method for appropriate estimation of rock state such as fresh or damaged rocks is also requested with increasing structural development. On these purposes, seismic logging system, which is a simple and easy way for handling as well as small and light, has been developed. Seismic logging method is one of logging tests, which is able to evaluate the state of rock mass with various shapes and is possible to obtain the relatively accuracy data at situ state. In addition, seismic logging method is at to apply to estimate structural behavior, before and after support installed. According to the results obtained from this study, firstly, it is clear that the extent of damage in rock slope due to blasting is able to be evaluated with quantity using seismic logging method, moreover to decide the damage zone in rock slope reasonably. Secondly, it is expected that installing depth of support is able to be decided more effectively and economically, using the results of seismic logging data. Finally, seismic logging method is also able to be applied safety supervision of structures, before and after support installed.

A Sensitivity Analysis of Design Parameters of an Underground Radioactive Waste Repository Using a Backpropagation Neural Network (Backpropagation 인공신경망을 이용한 지하 방사성폐기물 처분장 설계 인자의 민감도 분석)

  • Kwon, S.;Cho, W.J.
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.203-212
    • /
    • 2009
  • The prediction of near field behavior around an underground high-level radioactive waste repository is important for the repository design as well as the safety assessment. In this study, a sensitivity analysis for seven parameters consisted of design parameters and material properties was carried out using a three-dimensional finite difference code. From the sensitivity analysis, it was found that the effects of borehole spacing, tunnel spacing, cooling time and rock thermal conductivity were more significant than the other parameters. For getting a statistical distribution of buffer and rock temperatures around the repository, an artificial neural network, backpropagation, was applied. The reliability of the trained neural network was tested with the cases with randomly chosen input parameters. When the parameter variation is within ${\pm}10%$, the prediction from the network was found to be reliable with about a 1% error. It was possible to calculate the temperature distribution for many cases quickly with the trained neural network. The buffer and rock temperatures showed a normal distribution with means of $98^{\circ}C$ and $83.9^{\circ}C$ standard deviations of $3.82^{\circ}C$ and $3.67^{\circ}C$, respectively. Using the neural network, it was also possible to estimate the required change in design parameters for reducing the buffer and rock temperatures for $1^{\circ}C$.

Development of Integrated Type Main Frame and Downhole Sonde Apparatus for Hydraulic Packer Testing in Seabed Rock under High Water Pressure (고수압 해저지반 수리특성 조사용 일체형 메인 프레임과 공내 측정장치 개발)

  • Bae, SeongHo;Kim, Jangsoon;Jeon, Seokwon;Kim, Hagsoo
    • Tunnel and Underground Space
    • /
    • v.28 no.3
    • /
    • pp.258-276
    • /
    • 2018
  • The accurate and quantitative ground information on the hydraulic conductivity characteristics of rock mass is one of the key factors for evaluation of the hydro-geological behaviour of rock mass around an excavated opening under high water pressure. For tunnel and rock structures in seabed, where the sea acts as an infinite source of water, its importance become greater with increasing construction depth below sea level. In this study, to improve the problems related with poor system configuration and incorrect data acquisition of previous hydraulic packer testing equipment, we newly developed an integrated main frame and 30 bar level waterproof downhole sonde apparatus, which were optimized for deep hydraulic packer test in seabed rock mass. Integration of individual test equipment into one frame allows safe and efficient field testing work on a narrow offshore drilling platform. For the integrated type main frame, it is possible to make precise stepwise control of downhole net injection pressure at intervals of $2.0kg_f/cm^2$ or less with dual hydraulic oil volume controller. To ensure the system performance and the operational stability of the prototype mainframe and downhole sonde apparatus, the field feasibility tests were completed in two research boreholes, and using the developed apparatus, the REV(Representative Elementary Volume) scale deep hydraulic packer tests were successfully carried out at a borehole located in the basalt region, Jeju. In this paper, the characteristics of the new testing apparatus are briefly introduced and also some results from the laboratory and in-situ performance tests are shown.

A study on conceptual evaluation of structural stability of room-and-pillar underground space (주방식 지하공간의 구조적 안정성 평가개념 정립에 관한 연구)

  • Lee, Chulho;Chang, Soo-Ho;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.6
    • /
    • pp.585-597
    • /
    • 2013
  • In this study, in order to evaluate stability of the room-and-pillar underground structure, a series of preliminary numerical analyses were performed. Design concept and procedure of an underground structure for obtaining a space are proposed, which should be different from structural design for the room-and-pillar in mine. With assumed material properties, a series of numerical analyses were performed by varying size ratios of room and pillar and then the failure modes and location at yielding initiation were investigated. From the results, relationship between the ratio of pillar width to the roof span (w/s) and overburden pressure at failure initiation shows a relatively linear relation, and the effect of w/s on structural stability is much more critical than the ratio of pillar width and height (w/H) which is a crucial parameter in design of the room-and-pillar mining. It means that roof tensile failure and shear failure at shoulder and pillar are necessary to be considered together for confirming overall structural stability of the room-and-pillar structure, rather than considering the pillar stability only in mining. Failure modes and location at failure initiation were varied with respect to the ratio of room and pillar widths. Therefore, it is necessary to simultaneously consider stability of both roof span and pillar for design of underground structure by the room-and-pillar method.

An investigation on the ground collapse mechanism induced by cracks in a non-pressurized buried pipe through model tests (모형시험을 통한 비압력 지중관거 균열로 인한 지반함몰 메커니즘 연구)

  • Kim, Yong-Key;Nam, Kyu-Tae;Kim, Ho-Jong;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.235-253
    • /
    • 2018
  • Groundwater flow induced by cracks in a buried pipe causes ground loss in the vicinity of it which can lead to underground cavities and sinkhole problems. In this study, the ground collapse mechanism and the failure mode based on an aperture in the pipe located in cohesionless ground were investigated through a series of physical model studies. As the influence parameters, size of the crack, flow velocity in the pipe, groundwater level, ground cover depth and ground composition were adopted in order to examine how each of the parameters affected the behavior of the ground collapse. Influence of every experimental condition was evaluated by the final shape of ground failure (failure mode) and the amount of ground loss. According to the results, the failure mode appeared to be a 'Y' shape which featured a discontinuous change of the angle of erosion when a groundwater level was equal to the height of the ground depth. While in the case of a water table getting higher than the level of ground cover depth, the shape of the failure mode turned to be a 'V' shape that had a constant erosion angle. As the height of the ground depth increased, it was revealed that a mechanism where a vertically collapsed area which consisted of a width proportional to the ground height and a constant length occurred was repeated.

Numerical simulation for variations of water saturation in bentonite buffer under the effect of a rock joint using the TOUGH2 code (TOUGH2 code를 이용한 처분장 절리암반 내 벤토나이트 완충재의 포화도 변화)

  • Kim, Jin-Seop;Cho, Won-Jin;Lee, Kyung-Soo;Choi, Heui-Joo;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.6
    • /
    • pp.575-593
    • /
    • 2012
  • This paper briefly introduces the scope and objectives of SKB Task 8, which is an international cooperative research project. In addition, the hydraulic behaviors of bentonite buffer focusing on the interactions between bentonite and a rock mass with a joint were investigated using TOUGH2 code as part of a sub-mission of Task 8a. The effects of a rock joint and high capillary pressure of bentonite on the re-saturation properties and pressure distribution in a buffer were identified and successfully incorporated in the TOUGH2 code. Based on the numerical results, it was found that the speed of re-saturation in bentonite surrounded by a rock mass with a joint is 2.5 to 12 times faster than that in a condition without a rock joint, while the degree of saturation in the lower part of the buffer material is generally higher than in the upper part in both the cases of with and without a joint. It can be anticipated that the results obtained from this study can be applied to an estimation of the full saturation time and a determination of optimum thickness with regard to the design of the bentonite buffer in a high level waste disposal system.