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Abstract The prediction of near field behavior around an underground high-level radioactive waste repository is
important for the repository design as well as the safety assessment. In this study, a sensitivity analysis for seven
parameters consisted of design parameters and material properties was carried out using a three-dimensional finite
difference code. From the sensitivity analysis, it was found that the effects of borehole spacing, tunnel spacing,
cooling time and rock thermal conductivity were more significant than the other parameters. For getting a statistical
distribution of buffer and rock temperatures around the repository, an artificial neural network, backpropagation,
was applied. The reliability of the trained neural network was tested with the cases with randomly chosen input
parameters. When the parameter variation is within +10%, the prediction from the network was found to be reliable
with about a 1% error. It was possible to calculate the temperature distribution for many cases quickly with the
trained neural network. The buffer and rock temperatures showed a normal distribution with means of 98°C and
83.9°C standard deviations of 3.82°C and 3.67°C, respectively. Using the neural network, it was also possible to
estimate the required change in design parameters for reducing the buffer and rock temperatures for 1°C.

Key words HLW repository, backprogagation, sensitivity analysis, FLAC3D, buffer

£ E stnEy WHHZE A8 SAGAAA Y ASE oEdke A AR AL A Bl
Zsich B A7olAE 3349 SUAE DS olg3te] HEY HAAA U AREHOE Pk 714
QAzte) oigh WAE A& AABgth W= B4 A e 3, Bd 1, dA0E el dlee
7 ok Qo] ujs) Gagol £ AOR Viehgth Ay Fuie) il 954 LE0) AHS BRE 5]
918} backpropagation Q14174 7o A-gE|oict s AFAATY] APEE B8] He] FER
AAE A4 QdRbe] igt o] HAJE|gict 1At grel Msh £10% o A9, AR 1% A2 AHE
2ol dF 4TS RS & 4 ATk oPA FEE AT TRt A9 e Al 2% 3o
g3 & U YA} ko] LEL 27} W 98°C, 83.9°C EEWAH: 3.82°C 9 367CE Lheite.
AFAFGE ol §Fo N ANt A LE5 1°C MIA7)7] ffs] dad A I 24 s Y

SHAIO| 571229)2] 23, Backpropagation, WZFE 4], FLAC3D, 954

1. Introduction

1

A At d HALH N EV 2T R

* WAIA R} kwonsk@kaeri.re.kr

P4 20099 64 2% The suggestion of a reliable solution for a safe mana-
AAF 289 20099 69Y 15¢Y gement of high-level radioactive wastes (HLW) including
A &4 ;20093 69 169

203



204 A Sensitivity Analysis of Design Parameters of an Underground Radioactive Waste Repository
Using a Backpropagation Neural Network

spent fuels is an urgent issue in many countries utili-
zing nuclear energy. To dispose of the radioactive
waste in a geological formation, it is required to
understand the overall behavior of the design para-
meters in the deep underground repository conditions.
One of the unique characteristic of HLW is the heat
generation from the waste. Even after tens of years
of cooling in the pools at reactor sites, significant
heat is generating for a long time after the em-
placement of the waste in an underground repository.
The understanding of the influence of the decay heat
on mechanical, hydraulic, and chemical behaviors of
the disposal system is an important issue for the
design of the repository as well as the safety assess-
ment of the system.

Normally the distribution of heat in a geological
repository system is predicted using computer simulations.
Because of the influence of discontinuities and other
geo-environmental parameters, rock properties around
an underground excavation cannot be consistent but
vary. Such a rock property variation should be con-
sidered in the calculation of the temperature distri-
bution. At that point of view, a statistical approach is
highly recommended for a reliable prediction of the
behavior of rock mass under a repository condition.
The only problem to achieve a statistical distribution
of the temperatures around a disposal tunnel is the
long calculation time required to run a three-dimensional
model with a complex geometry.

It would be possible to use some empirical equations
for calculating the temperature distribution around an
underground repository. However, empirical equations
can be applied only to general cases not to complex
cases with different material properties, rock property
change in EDZ, and three-dimensional condition.

In this study, therefore, a sensitivity analysis for
different material properties, which can influence on
the temperature distribution in the near field close to
the waste, was carried out with a three-dimensional
finite difference code. The temperatures at important
locations were used for training an artificial neural
network and then the trained network was tested using
the temperatures from different cases with randomly
chosen design parameters. When it was confirmed that
the trained network works well for the temperature

prediction, it was applied for estimating the statistical
distribution of temperatures.

2. HLW disposal concept and decay heat

In Korea, 20 nuclear power plants are operating and
producing significant amount of spent fuels. Currently
more than 9500 tons of spent fuels had been pro-
duced and temporarily stored at the reactor sites. With
regard to the safe management of the spent fuels, a
long-term R&D program was started in 1997 and a
Korean reference disposal system, KRS, could be
suggested in 2006 (Lee et al., 2006).

According to the KRS, the spent fuels will be
encapsulated in corrosion resistant canisters and dis-
posed of in a deep underground repository constructed
in a crystalline rock located at 500 m below the
surface. Compacted bentonite buffer will be installed
surrounding the canisters for various purposes. In the
KRS, the canisters containing Pressurized Water Reactor
(PWR) and Canadian Deuterium Uranium Reactor (CANDU)
spent fuels are assumed to be emplaced in the vertical
boreholes drilled with spacing of 6 m and 4 m, re-
spectively, in the floor (Lee et al., 2006). The borehole
spacing and tunnel spacing were determined based on
the thermal calculation to satisfy that the buffer tem-
perature should be lower than 100°C. In order to
dispose of the spent fuel expected to be generated
during the life time of the Korean nuclear power

6.2m
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L. Fuel part
Deposition
Hole

Fig. 1. Disposal tunnel and deposition hole concept for the
Korean reference disposal system.
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plants in an underground repository, more than 4 km’
underground repository is required. Since the principal
repository design is determined based on the thermal
criteria, it is highly recommended to clearly under-
stand the thermal behavior at the repository design as
well as safety assessment point of views.

The mixture of bentonite and crushed rock is con-
sidered as the backfilling material. Backfilling is assumed
to be done immediately after the emplacement of
canister and buffer. Fig. 1 shows the conceptual design
of the disposal tunnel and deposition hole. Further
description of Korean reference disposal concept can be
found KAERI reports (Lee, et al., 2005).

3. Sensitivity analysis of near field on temperature

3.1 Model mesh and initial condition

For the detailed thermal analysis, the disposal tunnel,
fuel part, cask, backfill, buffer, excavation damaged
zone (EDZ) and rock were included separately in the
model as shown in Fig. 2. The surface temperature
was assumed to be 15°C and a geothermal gradient
of 3°C/100 m was used. For the PWR spent fuel
generated from the Korean nuclear power plants, the
decay heat can be calculated using the following
equation (Choi et al., 1997);

P(r) =14548 xt 7 (W /year) t > 30 years (1)

Buckfill

Fuel part

Fig. 2. Model mesh for the HLW repository at 500m deep
underground.

where, t is the elapsed time (year) after extracting the
spent fuel from a reactor.

3.2 Parameters for sensitivity analysis

A sensitivity analysis was carried out for investi-
gating the influence of different design parameters
and material properties on thermal behavior around an
underground HLW disposal tunnel. Seven parameters
including the thermal properties and major repository
parameters such as tunnel and deposition hole spacing
were varied £10% from their reference properties, which
were used for the KRS development. Cooling time
represents that the elapsed time since the release of
the spent fuel from nuclear reactor. For the sensitivity
analysis of the seven parameters, a full factorial design
was applied and the variation of the parameters for
64 cases are listed in Table 1.

3.3 Calculation results

For each case, the temperature variation with time
was calculated for 200 years using FLAC3D (Itasca,
2002). Fig. 3 shows a typical temperature change of
buffer and rock with time. The buffer and rock tem-
peratures increase rapidly after the emplacement of
PWR spent fuel in a deposition hole and then smoothly
decrease with time. Since it is normal to arrive the
peak temperature of buffer and rock before 100 years,
the calculation time of 200 years is long enough to
check the peak temperatures for the 64 cases. After
calculation, the peak temperatures at buffer and rock
were checked and used for the following sensitivity
analysis.

buffer temperature

Tock temperature

Temperature (deg. C)

0 ‘ e e
4 20 40 60 80 100 120 140 160 180 200

Elapsed time (years)
Fig. 3. The variation of buffer and rock temperatures with
time for the case with reference input parameters.
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Table 1. Input values for the 64 cases from a full factorial design

Case Hole Spacing Tunnel spacing Cooling time Rock T.C. Buffer T.C. Backfill T.C. EDZ T.C.
m) (m) (vear) (W/m°K) (W/m°K) (W/m°K) (W/m’K)
1 6.6 44 44 2.75 1.1 22 3.85
2 6.6 44 44 2.75 1.1 1.8 3.15
3 6.6 44 44 2.75 0.9 2.2 3.15
4 6.6 44 44 2.75 0.9 1.8 3.85
5 6.6 44 44 225 1.1 22 3.15
6 6.6 44 44 225 1.1 1.8 3.85
7 6.6 44 44 2.25 0.9 22 3.85
8 6.6 44 44 2.25 0.9 1.8 3.15
9 6.6 44 36 2.75 1.1 22 3.15
10 6.6 44 36 2.75 1.1 1.8 3.85
11 6.6 44 36 275 0.9 22 3.85
12 6.6 44 36 275 0.9 1.8 3.15
13 6.6 44 36 225 1.1 2.2 3.85
14 6.6 44 36 225 1.1 1.8 3.15
15 6.6 44 36 2.25 0.9 22 3.15
16 6.6 44 36 2.25 09 1.8 3.85
17 6.6 36 44 2.75 1.1 22 3.15
18 6.6 36 44 275 1.1 1.8 3.85
19 6.6 36 44 2.75 0.9 22 3.85
20 6.6 36 44 2.75 0.9 1.8 3.15
21 6.6 36 44 2.25 1.1 2.2 3.85
22 6.6 36 44 225 1.1 1.8 315
23 6.6 36 44 2.25 0.9 22 3.15
24 6.6 36 44 2.25 0.9 1.8 3.85
25 6.6 36 36 2.75 1.1 22 3.85
26 6.6 36 36 2.75 1.1 1.8 3.15
27 6.6 36 36 275 0.9 2.2 3.15
28 6.6 36 36 2.75 0.9 1.8 3.85
29 6.6 36 36 2.25 1.1 2.2 3.15
30 6.6 36 36 2.25 1.1 1.8 3.85
31 6.6 36 36 225 0.9 22 3.85
32 6.6 36 36 225 0.9 1.8 3.15
33 54 44 44 2.75 1.1 22 3.15
34 5.4 44 44 2.75 1.1 1.8 3.85
35 5.4 44 44 2.75 0.9 2.2 3.85
36 5.4 44 44 2.75 0.9 1.8 3.15
37 5.4 44 44 2.25 1.1 2.2 3.85
38 5.4 44 44 225 1.1 1.8 3.15
39 5.4 44 44 225 09 22 3.15
40 5.4 44 44 2.25 0.9 1.8 3.85
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Table 1. Input values for the 64 cases from a full factorial design (continue)

38 5.4 44 44 225 1.1 1.8 3.15
39 5.4 44 44 225 0.9 22 3.15
40 54 44 44 225 0.9 18 3.85
41 5.4 44 36 2.75 1.1 22 3.85
42 54 44 36 2.75 1.1 1.8 3.15
43 5.4 44 36 2.75 0.9 22 3.15
44 5.4 44 36 2.75 0.9 1.8 3.85
45 5.4 44 36 225 1.1 22 3.15
46 5.4 44 36 225 L1 1.8 3.85
47 54 44 36 2.25 0.9 22 3.85
48 5.4 44 36 225 0.9 1.8 3.15
49 5.4 36 44 2.75 1.1 22 3.85
50 5.4 36 44 275 1.1 1.8 3.15
51 5.4 36 44 2.75 0.9 22 3.15
52 5.4 36 44 2.75 0.9 1.8 3.85
53 54 36 44 225 1.1 22 3.15
54 54 36 44 225 1.1 18 3.85
55 54 36 44 225 0.9 22 3.85
56 54 36 44 225 0.9 1.8 3.15
57 54 36 36 2.75 1.1 22 3.15
58 5.4 36 36 2.75 11 18 3.85
59 5.4 36 36 2.75 0.9 22 3.85
60 54 36 36 2.75 0.9 1.8 3.15
61 5.4 36 36 225 L1 22 3.85
62 5.4 36 36 225 1.1 1.8 3.15
63 5.4 36 36 225 0.9 22 3.15
64 5.4 36 36 225 0.9 1.8 3.85
Rej:fi:“ 6 40 40 25 1.0 2 3.5

3.4 Major effect

Using the calculation results from the 64 cases, it
is possible to determine the relative effect of the pa-
rameters on the peak temperatures at buffer and rock.
The effect of each parameter can be determined as
following:

32 32
iélTEMPk,if .Z—ltempk’j @)
= j =
E =

32

Where, Ex is the main effect of kth parameter. TEMPy
and tempy are the temperature for the cases with higher

and lower value of kth parameter, respectively. The
main effects of the parameters on the peak rock and
buffer temperatures are shown in Fig. 4. Negative main
effect of a parameter means that the temperature de-
creases with an increase of the parameter. In the case
of the deposition hole spacing, which was found to
be the most critical parameter, the buffer temperature
decreased by almost 8°C when the hole spacing
increased from 5.4 m to 6.6 m.

When the parameters vary in a given range from
the reference values, the influence of deposition hole
spacing on both of rock and buffer temperatures is the
strongest. For the peak buffer temperature, cooling time
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Fig. 4. Main effect of the seven parameters on buffer and
rock temperatures.

is the second major parameters, while it is the tunnel
spacing for the peak rock temperature. One interesting
fact is that the main effect of buffer conductivity on
the peak rock temperature is very small. That means
the variation of buffer thermal conductivity does not
consistently increase or decrease the peak rock tem-
perature. The weakest parameters are the thermal con-
ductivity of backfill and EDZ. Even though the effect
of backfill and EDZ is insignificant in the sensitivity
analysis, it should be kept in mind that the possible
variation of the properties in actual situation is much
larger than the variation of the other design parameters
and thus the actual effect can be more significant.

4. Application of neural network

4.1 Backpropagation

Since the theoretical basis of neural network was
developed in 1943 by the McCulloch and Pitts, various
techniques including Backpropagation (BP), ART, Hop-
field, and etc. could be developed. Many researchers
applied the technique for different purposes, mainly
for noise reduction, pattern recognition, performance
prediction, and optimization (Lawrence, 1993). In this
study, BP was used for the prediction of temperature
around an underground repository.

BP is a multi-layer feed-forward network that uses
a supervised learning method in which an error signal
is fed back through the network and changes network
values to correct the error and to prevent the same
error from happening again (Lawrence, 1993). A theo-

Hidden
layer

Input
layer

Output
layer

Fig. 5. The structure of the neural network used for the
sensitivity analysis.

retical foundation of backpropagation can be found in
Rumelhart et al. (1988). It is one of the most commonly
used models because it provides a mathematical ex-
planation of the dynamics of learning and has proved
to be consistent and reliable. BP is suitable for the
analysis of temperature distribution around an under-
ground repository, which is influenced by many para-
meters and it is not easy to identify an equation
adequate for explaining the complex relationship between
the parameters and the temperature distribution.

In BP network, input, hidden, and output layers are
interconnected and exchange information from one
layer to the other. Fig. 5 shows the architecture of the
three-layer BP used in this study. Seven input nodes
and two output nodes are for the seven input para-
meters and two resulted temperatures in the sensi-
tivity analysis. There is no formula to determine how
many hidden neurons are best for a network, because
it is largely dependent upon the complexity of the
problem being solved. One rule of thumb is to use the
average of the number of inputs and the number of
the output neurons (Lawrence, 1993). In this study,
therefore, 4 hidden nodes were used.

4.2 Training and testing of neural network

The buffer and rock temperatures from 64 cases
were applied for training of the neural network. As
shown in Fig. 6, the neural network can fit the tem-
peratures almost exactly after training. In order to
check the reliability of the trained network, the network
was tested using extra 30 cases with randomly selected
input parameters. Among them, the input parameters
for 20 cases were randomly chosen in the +10%
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Fig. 6. Training result of the neural network.
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Fig. 7. Testing result of the neural network.

ranges from the reference values as for the sensitivity
analysis, while the parameters for the other 10 cases
were chosen in larger than +10% ranges to check
whether the trained network has the capability of
extrapolation. Fig. 7 shows the testing result. When
the parameter variation is less than +10% from the
reference values, the neural network could predict
precisely with about 1% error range. With a higher
variation of the parameters than +10%, the prediction
accuracy was significantly dropped. From this, it is
possible to conclude that the trained neural network
does not have the capacity of extrapolation.

4.3 Prediction

The tested neural network was used for a statistical
approach on the prediction of the peak temperatures
at buffer and rock. Since the calculation time of the
temperatures from the network is extremely short com-
pared to that of three-dimensional codes, it was possible
to run 1,000 cases with randomly chosen input para-
meters. Fig. 8 shows the buffer and rock temperatures
calculated from the neural network. The influence of
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Rock temperature {deg. C)
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85 90 95 ](;D 1&5 o s
Buffer temperature (deg. C)
Fig. 8. The relationship between the buffer and rock tempe-
ratures from the 1,000 cases with randomly chosen
input parameters.
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Fig. 9. The relationship between the temperature and hole
spacing from the 1,000 cases with different input
parameters.
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Fig. 10. The distribution of buffer and rock temperatures for
1,000 randomly chosen input parameters.

hole spacing was plotted in Fig. 9. It is possible to
observe that the temperatures decrease almost linearly
with increase of hole spacing.

The distribution of peak buffer and rock tempe-
ratures from 1,000 cases is plotted in Fig. 10. Both
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show normal distributions with the standard deviation
of 3.82 and 3.67°C, respectively. In the case of rock
temperature, the peak temperature varies from 74 to
96°C depending on the combination of input parameters,
which vary in £10% range. The buffer temperature
varies from 88 to 110°C. Even though the peak buffer
temperature with reference design parameters is lower
than 100°C, the combination of the parameters with
+10% variation can result over 100°C.

4.4 Parameter adjustment for changing 1deg. C

With the trained neural network, it was possible to
estimate the required adjustment of input parameters
for changing the buffer and rock temperatures for a
certain degree. In order to do that, each input parameter
was randomly chosen within £10% variation, while the
other parameters were fixed as the reference values.
Fig. 11 shows the predicted temperatures from the
neural network for 100 different tunnel spacings. Simi-
larly the following linear equations could be deter-
mined for the other parameters;

a. Hole spacing
T, per = —6.6354 x Hole spacing(m)+137.74 3)

T

rock

=—7.6354 x Hole spacing(m) +126.95 “4)

b. Tunnel spacing
Ty er =—0.4385x Tunnel spacing(m)+115.42 (5)

T =—0.7711xTunnel spacing(m)+114.26 (6)

¢. Cooling time

Tyer = —0.9181x Cooling time(year) +134.59 )

T, =—0.443x Cooling Time(year)+101.12 ®)

d. Rock conductivity
Ty = —10.281x Rock Cond (W /m°K)+123.55  (9)

T, =-10.135x Rock Cond (W /m°K)+108.74 (10)

e. Buffer conductivity

T, er =—20.06x Buffer Cond (W /m°K)+117.92 (11)

T,

rock

= —0.3543 x Buffer Cond (W /m°K)+83.044 (12)

f. Backfill conductivity
T, = —0.8313x Backfill Cond.(W | m*K)+99.49 (13)

T, =—0.5085x% Backfill Cond (W /m°K)+84.408 (14)

g. EDZ conductivity

Ty = —1.4069x EDZ Cond (W /m*K)+102.75 (15)

T, =—0.8324x EDZ Cond.(W | m°K)+86.303 (16)

From the linear relationship, the required change of
each parameter in order to reduce the buffer and rock
temperature 1°C can be calculated from the slope of
the lines. Table 2 lists the results for the input pa-
rameters. It is possible to conclude that a 1.3 m

120

y 04385k + 11542

Temperature (deg. C)
o
2

y - -0.7711x + 114.26
* Buffer temperature
O Rock temperature

35 36 37 38 39 40 41 42 a3 44 45

Tunnel spacing (m)

Fig. 11. The relationship between the buffer and rock tempe-
ratures and the tunnel spacing.

Table 2. Required change to decrease the buffer and rock temperatures of 1°C.

P " Hole Tunnel Cooling Rock Buffer Backfill EDZ
arametet spacing spacing time T.C. T.C. T.C. T.C.
Unit m m year w/m’K w/m’K w/m’K w/m°’K
Buffer 0.15 228 1.09 0.10 0.05 120 0.71
Temperature
Rock 0.14 130 226 0.10 2.82 197 1.20
Temperature
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longer tunnel spacing or a longer cooling time of 2.26
years is required to decrease the rock temperature for
1°C.

5. Conclusions

The prediction of temperature distribution around
an underground HLW repository is important for the
design as well as the safety assessment. In this study,
a sensitivity analysis for 7 major parameters including
(a) deposition hole spacing; (b) tunnel spacing; (c) cooling
time; (d) thermal conductivities of rock; (e) thermal
conductivities of buffer; (f) thermal conductivities of
backfill; and (g) thermal conductivities of EDZ was
carried out using FLAC3D. Totally 64 cases were
calculated with +10% variation of the parameters. From
the sensitivity analysis, it was possible to determine
the relative effect of the parameters on the peak tem-
peratures at buffer and rock. It was found that the
effects of hole spacing, tunnel spacing, cooling time
and rock thermal conductivity were more significant
than the other parameters, when the parameters varied
+10% from their reference values. In order to apply
the result, it is required to consider the possible variation
in actual condition. For instance, even though the
effect of EDZ, with +£10% variation is insignificant,
it’s effect will be increased with larger variation in
actual rock condition.

For the statistical prediction of temperature distri-
bution, it was required to suggest a faster calculation
technique than the three-dimensional computer code.
In this study, a neural network, backpropagation, was
applied to the statistical prediction of the temperatures.
After training of a neural network with the calculated
temperatures from the 64 cases, the reliability of the
trained network was tested with another 30 cases with
randomly chosen input parameters. From the testing,
it was found that when the parameter variation is within
+10%, the prediction from the network was accurate
with about 1% error. Because of that, the input para-
meters of the 1,000 cases for the statistical prediction
of buffer and rock temperatures were randomly chosen

within +10% range. It was possible to observe that the
buffer and rock temperatures showed normal distribution
with means of 98°C and 83.9°C and the standard
deviation of 3.82°C and 3.67°C, respectively. Using
the neural network, it was also possible to estimate
the required change in design parameters for reducing
the buffer and rock temperature for 1°C. The required
adjustments of the parameters for decreasing buffer
temperature for 1°C are as following:

(a) Deposition hole spacing : +0.15 m

(b) Tunnel spacing : +2.28 m

(c) Cooling time : +1.09 year

(d) Thermal conductivity of rock : +0.1 W/m°K

(¢) Thermal conductivity of buffer : +0.05 W/m'K
(f) Thermal conductivity of backfill: +1.2 W/m°K
(g) Thermal conductivity of EDZ: +0.71 W/m'K
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