Browse > Article
http://dx.doi.org/10.7474/TUS.2022.32.6.464

Research Trend of DFN Modeling Methodology: Representation of Spatial Distribution Characteristics of Fracture Networks  

Jineon, Kim (Department of Energy Systems Engineering, Seoul National University)
Jiwon, Cho (Department of Energy Systems Engineering, Seoul National University)
iIl-Seok, Kang (Department of Energy Systems Engineering, Seoul National University)
Jae-Joon, Song (Department of Energy Systems Engineering, Seoul National University)
Publication Information
Tunnel and Underground Space / v.32, no.6, 2022 , pp. 464-477 More about this Journal
Abstract
DFN (discrete fracture network) models that take account of spatial variability and correlation between rock fractures have been demanded for analysis of fractured rock mass behavior for wide areas with high reliability, such as that of underground nuclear waste repositories. In this regard, this report describes the spatial distribution characteristics of fracture networks, and the DFN modeling methodologies that aim to represent such characteristics. DFN modeling methods have been proposed to represent the spatial variability of rock fractures by defining fracture domains (Darcel et al., 2013) and the spatial correlation among fractures by genetic modeling techniques that imitate fracture growth processes (Davy et al., 2013, Libby et al., 2019, Lavoine et al., 2020).These methods, however, require further research for their application to field surveys and for modeling in-situ rock fracture networks.
Keywords
DFN; Spatial variability; Spatial correlation; Fracture domain; Genetic modeling;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Davy, P., Le Goc, R., and Darcel, C., 2013, A model of fracture nucleation, growth and arrest, and consequences for fracture density and scaling. Journal of Geophysical Research: Solid Earth, 118, 1393-1407.    DOI
2 Dershowitz, W., Baecher, G., and Einstein, H., 1979, Prediction of rock mass deformability. In Proceedings of the 4th ISRM Congress, Montreux, Switzerland, 1, 605-611. 
3 Evans, M., Hastings, N., and Peacock, B., 1993, Statistical distributions. Wiley, New York. 
4 Fisher, R., 1953. Dispersion on a sphere. Royal Society of London Proceedings, 217, 295-305.    DOI
5 Hudson, J. and Priest, S.D., 1979, Discontinuities and rock mass geometry. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16, 339-362.    DOI
6 Kulatilake, P.H.S.W., Wathugala, D.N., and Stephansson, O., 1993, Joint Network Modelling with a Validation Exercise in Stripa Mine, Sweden. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(5), 503-526.    DOI
7 Lavoine, E., Davy, P., Darcel, C., and Munier, R., 2020, A discrete fracture network model with stress-driven nucleation: impact on clustering, connectivity, and topology. Frontiers in Physics. doi:10.3389/fphy.2020.00009.    DOI
8 Lee, Y.K. and Song, J.J., 2019, Calculation of Joint Center Volume (JCV) for Estimation of Joint Size Distribution in Non-Planar Window Survey. Tunnel and Underground Space, 29(2), 89-107.    DOI
9 Libby, S., Hartley, L., Turnbull, R., Cottrell, M., Bym, T., Josephson, N., Munier, R., Selroos, J.-O., and Ivars, D.M., 2019, Grown Discrete Fracture Networks: A new method for generating fractures according to their deformation history. In Proceedings of the 53rd US Rock Mechanics/Geomechanics Symposium, June 2019, New York City. 
10 Maillot, J., Davy, P., Le Goc, R., Darcel, C., and Dreuzy, J.R., 2016, Connectivity, permeability, and channeling in randomly distributed and kinematically defined discrete fracture network models. Water Resources Research, 52(11), 8526-8545.    DOI
11 Min, K.B. and Stephansson, O., 2011, The DFN-DEM Approach Applied to Investigate the Effects of Stress on Mechanical and Hydraulic Rock Mass Properties at Forsmark, Sweden. Tunnel and Underground Space, 21(2), 117-127.    DOI
12 Neuman, S., 2005, Trends, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeology Journal, 13(1), 124-147.    DOI
13 Park, J.C., Park, S.H., Kim, H.Y., Kim, G.Y., and Kwon, S., 2015, Sensitivity Analysis of Three-Dimensional Discrete Fracture Network Modeling or Rock Mass. Tunnel and Underground Space, 25(4), 341-358.    DOI
14 Priest, S.D. and Hudson, J.A., 1981, Estimation of discontinuity spacings and trace length using scanline surveys. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 18, 183-197.    DOI
15 Park, J.S., Ryu, D.W., Ryu, C.H., and Lee, C.I., 2007, Groundwater Flow Analysis around Hydraulic Excavation Damaged Zone. Tunnel and Underground Space, 17(2), 109-118. 
16 Park, J., Kim, J.S., Lee, C., Kwaon, S., 2019, Hydraulic Analysis of a Discontinuous Rock Mass Using Smeared Fracture Model and DFN Model. Tunnel and Underground Space, 29(5), 318-331.    DOI
17 Priest, S.D., 1993, Discontinuity Analysis for Rock Engineering. Chapman & Hall, London.
18 Ren, F., Ma, G., Fan, L., Wang, Y., and Zhu, H., 2017, Equivalent discrete fracture networks for modelling fluid flow in highly fractured rock mass. Engineering Geology, 229, 21-30.    DOI
19 Ryu, S., Um, J.G., and Park, J., 2020, Estimation of Strength and Deformation Modulus of 3-D DFN System Using the Distinct Element Method. Tunnel and Underground Space, 30(1), 15-28.    DOI
20 Rippon, J.H., 1985, Contoured patterns of the throw and hade of normal faults in the Coal Measures (Westphalian) of north-east Derbyshire. Proceedings of the Yorkshire Geological Society, 45, 147-161.    DOI
21 Saevik, P. and Nixon, C., 2017, Inclusion of topological measurements into analytic estimates of effective permeability in fractured media. Water Resources Research, 53, 9424-9443.    DOI
22 Sanderson, D.J. and Nixon, C.W., 2015, The use of topology in fracture network characterization. Journal of Structural Geology, 72, 55-66.    DOI
23 Segall, P. and Pollard, D.D., 1983, Joint formation in granitic rock of the Sierra Nevada. Geological Society of America Bulletin, 94, 563-575.    DOI
24 Selroos, J.O., Ivars, D.M., Munier, R., Hartley, L., Libby, S., Davy, P., Darcel, C., and Trinchero, P., 2022, Methodology for discrete fracture network modelling of the Forsmark site: Part 1 - concepts, data and interpretation methods. SKB, Solna, Sweden. 
25 Spyropoulos, C., Griffith, W.J., Scholz, C.H., and Shaw, B.E., 1999, Experimental evidence for different strain regimes of crack populations in a clay model. Geophysical Research Letters, 26, doi:10.1029/1999gl900175.    DOI
26 Tsang, C.-F. and Neretnieks, I., 1998, Flow channeling in heterogeneous fractured rocks, Review of Geophysics. 36(2), 275-298.    DOI
27 Walsh, J.J. and Watterson, J., 1998, Analysis of the relationship between displacements and dimensions of faults. Journal of Structural Geology, 10, 239-247.    DOI
28 Barton, N., 1978, Suggested methods for the quantitative description of discontinuities in rock masses. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 15, 319-368.    DOI
29 Xiong, F., Sun, H., Zhang, Q., Wang, Y., and Jiang, Q., 2022, Preferential flow in three-dimensional stochastic fracture networks: The effect of topological structure. Engineering Geology, 309, 106856. 
30 Zhang, L. and Einstein, H.H., 2000, Estimating the intensity of rock discontinuities. International Journal of Rock Mechanics and Mining Sciences, 37, 819-837.    DOI
31 Berkowitz, B., 2002, Characterizing flow and transport in fractured geological media: A review. Advances in Water Resources, 25(8), 861-884.    DOI
32 Cruden, D., 1977, Describing the size of discontinuities. Proceedings of International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 14(3), 133-137.    DOI
33 Darcel, C., Davy, P., Bour, O., and de Dreuzy, J.R., 2006, Discrete fracture network for the Forsmark site. SKB, Solna, Sweden. 
34 Darcel, C., Le Goc, R., and Davy, P., 2013, Development of the statistical fracture domain methodology - application to the Forsmark site. SKB, Solna, Sweden. 
35 Davy, P., Le Goc, R., Darcel, C., Bour, O., de Dreuzy, J.R., and Munier, R., 2010, A likely universal model of fracture scaling and its consequence for crustal hydromechanics. Journal of Geophysical Research: Solid Earth, 115, B10411 
36 Davy, P., Darcel, C., Le Goc, R., Munier, R., Selroos, J.O., and Ivars, D.M., 2018, DFN, why, how and what for, concepts, theories and issues. Paper presented at the 2nd International Discrete Fracture Network Engineering Conference, Seattle, USA.