• Title/Summary/Keyword: 태평양판

Search Result 39, Processing Time 0.026 seconds

제주도의 지질과 동굴(협재굴을 중심으로)

  • 강창희
    • Proceedings of the Speleological Society Conference
    • /
    • 1992.07a
    • /
    • pp.29-30
    • /
    • 1992
  • 협재굴을 포함한 표선리 현무암은 알칼리암굴로 구성된 제주도 화산암의 일원으로서 일본열도 아래로 섭입하고 있는 태평양판 및 필리핀판과는 관계가 없으며 도리어 대서양 및 하와이의 암류와 규를 같이 한다. 표선리 현무암은 제주도 형성기의 초기인 제 2분출기에 유출된 감람석 현무암이다. 표선리 현무암은 다른 현무암에 비하여 동굴 생성에 유리한 조건을 가진 화산암인 것으로 보인다.(중략)

  • PDF

Paleogene dyke swarms in the eastern Geoje Island, Korea: their absolute ages and tectonic implications (거제도 동부에 분포하는 고제3기 암맥군: 절대연대와 지구조적 의미)

  • Son, Moon;Kim, Jong-Sun;Hwang, Byoung-Hoon;Lee, In-Hyun;Kim, Jeong-Min;Song, Cheol-Woo;Kim, In-Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.2 s.48
    • /
    • pp.82-99
    • /
    • 2007
  • The Paleogene dikes intruding into the late Cretaceous granodiorite are pervasively observed in the Irun-myeon, eastern Geoje Island. They are classified into three groups: NW-trending acidic dike swarm and WNW- (A-Group) and $NS{\sim}NNE-trending$ (B-Group) basic dike swarms. Based on their cross-cutting relationships, the earliest is the acidic dike group and fellowed by A- and B-Groups in succession. The acidic dikes seem to have intruded into tension gashes induced by the sinistral strike-slip faulting of the Yangsan fault system during the late $Cretaceous{\sim}early$ Paleogene. In terms of rock-type, orientation, age, and geochemistry, A-Group and B-Group are intimately correlated with the intermediate and basic dike swarms in the Gyeongju-Gampo area, respectively. These results significantly suggest that the corresponding dike swarms are genetically related. Based on the K-Ar and Ar-Ar age data, A- and B- Groups were intruded during $64{\sim}52\;Ma$ and $51{\sim}44\;Ma$, respectively. The result means that the direction of tensional stress in and around the SE Korean peninsula was changed abruptly from NNE-SSW to $EW{\sim}WNW-ESE$ at about 51 Ma. Considering the tectonic environments during the Paleogene, it is interpreted that A-Group was injected along the WNW-trending tensional fractures developed under an regional sinistral simple shear regime which was caused by the north-northwestward oblique subduction of the Pacific plate beneath the Eurasian plate. Meanwhile, the regional stress caused by the collision of India and Eurasia continents at about 55 Ma was likely propagated to the East Asia at about 51 Ma, and then the East Asia including the Korean peninsula was extruded eastwards as a trench-rollback and the dip of downgoing slab of the Pacific plate was abruptly steepened. As a result, the strong suction-force along the plate boundary produced a tensional stress field trending EW or WNW-ESE in and around the Korean peninsula, which resultantly induced B-Group to intrude passively into the study area.

센서 네트워크용 초소형 OS

  • Song, Jun-Geun;Ma, Pyeong-Su;Park, Seung-Min
    • Information and Communications Magazine
    • /
    • v.24 no.7
    • /
    • pp.26-35
    • /
    • 2007
  • 최근 몇 년간 유비쿼터스 서비스를 구현하기 위한 핵심 기술 중 하나인 무선 센서 네트워크에 대한 관심이 높아지고 있다. 무선 센서 네트워크 기술은 물류, 유통, 환경 감시, 홈오토메이션, 군사 분야 등 다양한 분야에 적용 될 수 있기 때문에 앞으로 관련 분야의 시장 또한 커질 것으로 예상되고 있다 [1]. 무선 센서 네트워크는 기존 유선 센서 네트워크나 무선 네트워크 환경과는 많은 차이를 가진다. 우선 극도로 제한된 시스템 자원만을 가질 수 있으며, 열악한 환경 속에서 무선매체를 통해 유기적으로 동작하여야 하는 특징을 가지고 있다. 적게는 수십 개에서 많게는 수백, 수천 개의 자율적인 하드웨어 노드들로 구성되는 무선 센서 네트워크에서 제한된 자원을 효과적으로 활용하기 위해서는 센서 노드에 적합한 운영체제가 필수적으로 요구된다. 지난 몇 년간 센서 노드하드웨어의 발달과 더불어 많은 센서 네트워크용 초소형 운영체제가 개발되어왔다. 현재 많이 알려져 있는 센서 네트워크용 OS로는, 가장 활발한 참여를 보이고 있는 TinyOS[3]부터 SOS[4], MANTIS[5], Contiki[6], T-kernel[7] 등이 있으며, 국내 기술로 개발된 Nano-Qplus[8] 등이 존재한다. 본고에서는 우선 센서 네트워크에 대한 배경 지식과 플랫폼 등에 대한 내용을 간단히 다루고, 본론에서 센서 네트워크용 운영체제가 가져야 할 조건과 현재 개발되어 있는 센서 네트워크 OS들의 특징에 대해 간략히 살펴보도록 하겠다. 또한 센서 네트워크 OS와 밀접한 연관성을 가지는 분야에 대해 간단히 살펴보고, 마지막으로 앞으로의 방향에 대해 알아본다.고려해 볼 때 atlas의 장축의 시계방향 회전은 액티베이터의 사용 효과로 생각되며, 이는 차후 II급 부정교합자에서 액티베이터 치료 효과를 판단하는 또 하나의 지표가 될 수 있다고 생각한다.인해 한반도를 포함한 동아시아 대륙이 태평양판 쪽으로 밀려감으로써 섭입하던 태평양판의 각도가 급해져 동아시아 연변에 강력한 흡입력이 발생하였으며, 이 때문에 태평양판의 운동 방향이 북북서에서 서북서방향으로 회전되었을 가능성이 있다. 따라서 약 51 Ma부터 한반도 동남부에는 지판 경계의 강력한 흡입력으로 동서 내지 서북서-동남동의 인장력이 작동되어 B그룹 암맥군이 관입한 것으로 해석된다.Ledge는 세 군 모두에서 나타나지 않았다. 4. 파일 binding 횟수는 MC군이 가장 적고 PT군이 가장 많았다 (p < 0.05). 이상의 결과를 볼 때, Mtwo 전동 파일을 crown-down technique으로 사용하는 것이 single length technique과 유사한 성형 효율을 보이면서도 더 안전할 것으로 추정된다.고 1명(3%)에서 원격전이를 보였다. 치료 중 급성 합병증으로 11명(37%)에서 RTOG grade 1-2의 장염을 보였으며 1명은 대장의 천공이 발생하여 수술로 치유되었다. 12명(40%)에서 RTOG grade 1-2의 급성 방광염을 보였다. 3명(10%)에서 RTOG grade 1-2의 백혈구 감소증이 보였으며 1명에서 심한 백혈구 감소증(RTOG grade 4)이 나타났으나 회복되어 치료를 완료하였다. 만성 합병증으로 5명(15%)에서 RTOG grade 1-2의 만성 장염을 보였으며 별다른 치료 없이 지내고 있으며

S-wave Relative Travel Time Tomography for East Asia (동아시아 S파 상대 주시 토모그래피)

  • Cho, Seongheum;Chang, Sung-Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.1
    • /
    • pp.18-24
    • /
    • 2017
  • We performed seismic imaging based on relative S-wave travel times to examine S-wave velocity of upper mantle structure beneath East Asia. We used teleseismic events recorded at 129 broadband stations of the Korea Institute of Geoscience and Mineral Resources (KIGAM), Korea Meteorological Administration (KMA), and National Research Institute for Earth Science and Disaster Prevention (NIED). Relative travel time residuals were obtained by a multi-channel cross-correlation method designed to automatically determine accurate relative phase arrival times. The resulting images show high-velocity anomalies along plate boundaries around the Japanese islands region. These anomalies may indicate subducting Pacific and Philippine Sea plates. On the other hand, a low-velocity anomaly is revealed beneath east of the Korean peninsula down to around 300 km depth, which is thought to be related to the formation of the Ulleung basin and the Ulleung island. Low-velocity anomalies revealed beneath the Jeju island may imply that the formation and volcanism of the Jeju island have been caused by magmatic sources from the deep mantle.

Characteristics of the Cenozoic crustal deformation in SE Korea and their tectonic implications (한반도 동남부 신생대 지각변형의 주요 특징과 지구조적 의의)

  • Son, Moon;Kim, Jong-Sun;Chong, Hye-Yoon;Lee, Yung-Hee;Kim, In-Soo
    • The Korean Journal of Petroleum Geology
    • /
    • v.13 no.1
    • /
    • pp.1-16
    • /
    • 2007
  • The southeastern Korean Peninsula has experienced crustal multi-deformations according to changes of global tectonic setting during the Cenozoic. Characteristic features of the crustal deformations in relation to major Cenozoic tectonic events are summarized as follows. (1) Collision of Indian and Eurasian continents and abrupt change of movement direction of the Pacific plate (50${\sim}$43 Ma): The collision of Indian and Eurasian continents caused the eastward extrusion of East Asia block as a trench-rollback, and then the movement direction of the Pacific plate was abruptly changed from NNW to WNW. As a result, the strong suction-force along the plate boundary produced a tensional stress field trending EW or WNW-ESE in southeastern Korea, which resultantly induced the passive intrusion of NS or NNE trending mafic dike swarm. (2) Opening of the East Sea (25${\sim}$16 Ma): The NS or NNW-SSE trending opening of the East Sea generated a dextral shear stress regime trending NNW-SSE along the eastern coast line of the Korean Peninsula. As a result, pull-apart basins were developed in right bending and overstepping parts along major dextral strike slip faults trending NNW-SSE in southeastern Korea. The basins can be divided into two types on the basis of geometry and kinematics: Parallelogram-shaped basin (rhombochasm) and wedged-shaped basin (sphenochasm), respectively. In those times, the basins and adjacent basement blocks experienced clockwise rotation and northwestward tilting contemporaneously, and the basins often experienced a kind of propagating rifting from NE toward SE. At about 17Ma, the Yonil Tectonic Line, which is the westernmost border fault of the Miocene crustal deformation in southeastern Korea, began to move as a major dextral strike slip fault. (3) Clockwise rotation of southeastern Japan Island (about 15 Ma): The collision of the Izu-Bonin Arc and southeastern Japan Island, as a result of northward movement of the Philippine sea-plate, induced the clockwise rotation of southeastern Japan Island. The event caused the NW-SE compression in the Korea Strait as a tectonic inversion, which resultantly tenninated the basin extension and caused local counterclockwise rotation of blocks in southeastern Korea. (4) E-W compression in the East Asia (after about 5 Ma): Decreasing subduction angle of the Pacific plate and eastward movement of the Amurian plate have constructed the-top-to-west thrusts and become a major cause for earthquakes in southeastern Korea until the present time.

  • PDF

Changes in atlas position with Class ll activator treatment in Class II malocclusion patients (II급 부정교합자에서 액티베이터 사용에 따른 atlas의 위치 변화에 관한 연구)

  • Cho, Moon-Ki;Cha, Kyung-Suk;Chung, Dong-Hwa;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.37 no.1 s.120
    • /
    • pp.44-55
    • /
    • 2007
  • Objective: Previous studies have reported that morphological features of the first cervical vertebra (atlas) have been associated with mandibular growth direction. The purpose of this study was to show the possible positional and morphological changes of the Atlas from activator treatment in Class II malocclusion patients. Methods: Lateral cephalometric radiograph tracings were made at initial, middle and final stages of treatment. Angular and linear measurements of skeletal and morphological features were measured on the anatomical landmarks and reference planes. Results: The skeletal effects of activator treatment on Class II malocclusion patients were evident on ramal height, body length, effective body length, ANB, and overjet. Clockwise rotation of the long axis of the Atlas was found in Group 1, but there was no inclination change of the Atlas in groups 2 and 3. There was no significant correlation between anterior and posterior positions of the atlas or morphological change in all groups. - except for posterior movements of the Atlas found in group 1. Conclusion: Clockwise rotation of the atlas axis resulted from activator treatment in Cl II malocclusion patients. Change in atlas axis can be thought of as an indicator for success of activator treatment.

The Effects of Organization Characteristics and Relationship Characteristics on Relational Performance: Focused on Mediating Effects of the Dimensions of Trust and Commitment (조직특성과 관계특성이 관계성과에 미치는 영향: 신뢰 차원과 결속 차원의 매개효과를 중심으로)

  • Sung, Min;Oh, Se-Jo
    • Journal of Distribution Research
    • /
    • v.12 no.1
    • /
    • pp.1-31
    • /
    • 2007
  • While trust and commitment are core mediating variables for the purpose of maintaining the long-term relationship, in the context of the characteristics of company and the relationship performance of its members, there have been limited studies which explore as to how each of the dimensions has affects differently. The basic purpose of this study is to examine the relationship between an automobile manufacturer and its agencies. The main purpose of this study is to examine how each different dimension of trust and commitment on the automobile manufacturer has different mediating effects between the characteristics of company(organization characteristics, relationship characteristics) and relationship performance perceived by its agents. Another purpose is to investigate the mechanism by which the relationship performance of the agencies is improved. An empirical study surveying 115 sales office managers at a leading automobile manufacturer in Korea was conducted. An analysis of the collected data indicates that while the characteristics of company have a positive influence on the agencies' relational performance through the mediating role of both trust of benevolence and commitment, agencies' trust of their headquarter's benevolence has a different influence on the dimensions of commitment. Finally, the authors discussed some theoretical contributions and managerial implications. And then, they presented limitations of this study and the future research directions.

  • PDF

Teleseismic Travel Time Tomography for the Mantle Velocity Structure Beneath the Melanesian Region (원거리 지진 주시 토모그래피를 이용한 멜라네시아 지역의 맨틀 속도 구조 연구)

  • Jae-Hyung Lee;Sung-Joon Chang
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • The Melanesian region in the western Pacific is dominated by complex plate tectonics, with the largest oceanic plateau, the OntongJava plateau, and a hotspot, the Caroline Islands. To better understand the complex geodynamics of the region, we estimate P- and S-velocity models and 𝛿 (VP/VS) model by using relative teleseismic travel times measured at seismometers on land and the seafloor. Our results show high-velocity anomalies in the subduction zones of the Melanesian region to a depth of about 400 km, which is thought to be subducting Solomon Sea, Bismarck, and Australian plates along plate boundaries. Along subduction zones, positive 𝛿 (VP/VS) anomalies are found, which may be caused by partial melting due to dehydration. A broad high-velocity anomaly is observed at 600 km depth below the Ontong-Java plateau, with a negative 𝛿 (VP/VS) anomaly. This is thought to be a viscous and dry remnant of the Pacific plate that subducted at 45-25 Ma, with a low volume of fluids due to dehydration for a long period in the mantle transition zone. Beneath the Caroline Islands, a strong low-velocity anomaly is obseved to a depth of 800 km and appears to be connected to the underside of the remnant Pacific plate in the mantle transition zone. This suggests that the mantle plume originating in the lower mantle has been redirected due to the interaction with the remnant Pacific plate and has reached its current location. The mantle plume also has a positive 𝛿 (VP/VS) anomaly, which is thought to be due to the influence of embedded fluids or partial melting. A high-velocity anomaly, interpreted as an effect of the thick lithosphere beneath the Ontong-Java plateau, is observed down to 300 km depth with a negative 𝛿 (VP/VS) anomaly, which likely indicate that little fluid remains in the melt residue accumulated in the lithosphere.

3D SV-wave Velocity Structure of East Asia using Rayleigh-Wave Tomography (레일리파 토모그래피를 사용한 동아시아의 3차원 SV파 속도구조)

  • You, Seol-Han;Chang, Sung-Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.1
    • /
    • pp.12-17
    • /
    • 2017
  • We construct 3D SV-wave velocity structure of the crust and the upper mantle beneath East Asia from Rayleighwave group-velocity measurements. For the construction of the SV-wave velocity model at 10 ~ 100 km depth, we used seismic data recorded at 321 broadband stations in Korea, Japan, and China. Rayleigh-wave group-velocity dispersion curves were obtained by using the multiple filtering technique in the period range from 3 to 150 s. High SV-velocity anomalies are imaged beneath the East Sea from 10 km depth to deeper depth, implying that the Moho beneath the East Sea is between at 10 ~ 20 km depth. We estimated the Moho beneath the Korean peninsula to be around 35 km based on the depth where a high-velocity anomaly is observed. The SV-wave velocity model shows prominent fast S-velocity anomalies near northeastern Japan, associated with the subducting Pacific plate. Low-velocity anomalies are found beneath the east coast of the Korean peninsula at 100 km depth, which may play a role in the formation of the Ulleungdo and the Ulleung basin. We observed low-velocity anomalies beneath the Yamato basin at 100 km depth as well, which may indicate the upwelling of fluid from the Pacific plate via dehydration at deeper depth.

Tectonic Features of a Triple-Plate Junction in Hokkaido Using Local Seismic Tomography

  • Kim, So-Gu;Bae, Hyung-Sub;Pak, Sang-Pyo
    • Proceedings of the KSEG Conference
    • /
    • 2005.04a
    • /
    • pp.101-106
    • /
    • 2005
  • The three-dimensional Tomography developed by Kim and Bae(2004) was applied to 64,024 P and 64,618 S wave arrival times observed at 238 seismic stations for 4050 local earthquakes in the depth range from 0 to 300 km in and around Hokkaido, Japan. High and low velocity zones for Vp/Vs were clearly imaged in and around Hokkaido. The upper seismic planes of the double seismic zone (DSZ) were found in the subducted Pacific Plate beneath Hokkaido at depth of 40- 80 km, which produced high seismicity around Hokkaido. The findings of high Vp/Vs anomalies beneath the Moho discontinuity supports an evidence of a surface triple-collision hypothesis prepared by Moriya(1994) that the Kuril Arc(Okhotsk Plate or North American Plate) is colliding against the NE Japanese Arc(Amurian Plate or Eurasian Plate), along and beneath the Hidaka Mountain Range, and at the same time the Pacific Plate is subducting into these two plates, making an equilibrium of tectonic forces along the Hikada Mountain Range (HMR) corner and the central tectonic axis(142 ~ 143E) in Hokkaido. The low Vp and Vs were also found in east and west along the central tectonic axis in which the focal mechanism represents the extensional forces. These phenomena are also consistent with low Bouguer gravity anomalies in this region. It is understood why most of great earthquakes occurred outside Hokkaido where the balance of tectonic forces are breaking from the triple junction of three tectonic forces in Hokkaido.

  • PDF