• 제목/요약/키워드: 탐색모델

검색결과 1,708건 처리시간 0.032초

심층신경망 및 베이지안 최적화 기반 패키지 휨 최적화 시간 단축 (Time Reduction for Package Warpage Optimization based on Deep Neural Network and Bayesian Optimization)

  • 이중언;권대일
    • 마이크로전자및패키징학회지
    • /
    • 제31권3호
    • /
    • pp.50-57
    • /
    • 2024
  • 최근 대리 모델에 머신 러닝 기술을 접목하여 복잡한 설계에 대한 최적화를 빠르게 달성하는 방법론이 활발히 연구되고 있다. 훈련된 머신 러닝 대리 모델은 복잡한 유한요소해석 시뮬레이션 대비 컴퓨팅 자원을 적게 소모하면서 동일한 해석 결과를 출력할 수 있다. 또한 훈련된 모델에 최적화를 결합하면 반복 시뮬레이션 대비 더 빠르게 최적의 설계 변수를 도출할 수 있다. 본 연구에서는 패키지 휨을 최소화하는 설계 변수 조합을 효과적으로 탐색하기 위하여 심층신경망과 베이지안 최적화를 적용하였다. 심층신경망 모델은 유한요소해석 시뮬레이션으로 획득한 설계 변수-휨 데이터셋을 바탕으로 훈련하였고, 해당 모델에 베이지안 최적화를 적용하여 휨을 최소화하는 최적의 설계 변수를 탐색하였다. 구축한 심층신경망 및 베이지안 최적화 모델은 실제 시뮬레이션 결과와 99% 이상 일치하는 동시에, 최적 설계 변수 탐색에 소요되는 시간은 15초에 불과하여, 1회의 시뮬레이션과 비교해도 57% 이상 최적화 시간을 단축할 수 있다.

PSO를 이용한 뉴로-퍼지 시스템의 파라미터 최적화 (Optimization of the Parameter of Neuro-Fuzzy system using Particle Swarm Optimization)

  • 김승석;김용태;김주식;전병석
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.168-171
    • /
    • 2006
  • 본 논문에서는 Particle Swarm Optimization 기법을 이용한 뉴로-퍼지 시스템의 파라미터 동정을 실시한다. PSO의 학습 및 군집 특성을 이용하여 시스템을 학습한다. 유전 알고리즘과 같은 무작위 탐색법을 이용하며 하나의 해 군집에 대해 다수 객체들이 탐색하는 기법을 통하여 최적해 부분의 탐색성능을 높여 전체 모델의 학습성능을 개선하고자 한다. 제안된 기법의 유용성을 시뮬레이션을 통하여 보이고자 한다.

  • PDF

유전 알고리즘과 군집 분석을 이용한 확률적 시뮬레이션 최적화 기법

  • 이동훈
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1998년도 추계학술대회 및 정기총회
    • /
    • pp.62-64
    • /
    • 1998
  • 유전 알고리즘은 전통적인 등반 알고리즘을 이용하여 구하기 어려웠던 최적화 문제를 해결하기 위한 강인한 (Robust) 탐색 기법이다. 특히 목적함수가 (1)여러 개의 국부 최대치를 가지거나 (2)수학적으로 표현이 불가능하거나 어렵거나 (3) 목적함수에 교란항이 섞여 있을 경우도 우수한 탐색 능력을 갖는 것으로 알려져 있다. 본 논문에서는 군집성 분석(cluster analysis)을 이용하여 군집화함으로써 유전 알고리즘을 이용하여 나타나는 다양한 해집합을 형성하는 개체군을 그룹화하고, 각 군집에 부여된 군집 적합도에 따라서 최적해를 구함으로써 최적값에 근접시킬 수 있는 탐색 알고리즘을 제안하였으며, 시뮬레이션의 출력이 특정한 테스트 함수의 형태로 나타난다고 가정한 경우에 확률적으로 나타나는 시뮬레이션 모델의 출력을 최대화하는 문제에 대하여 적용하고 분석하였다.

  • PDF

클라우드 협업: 이종 자원 탐색 기술 연구 (A Study on Methods of Searching Multi-Cloud Resources in Cloud Collaboration)

  • 김유식;윤찬현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.262-263
    • /
    • 2012
  • 하나의 클라우드 서비스 제공자가 제공하는 컴퓨팅 자원의 양과 종류에는 한계가 있다. 이를 극복하려면 클라우드 협업 기술인, 다중 클라우드 자원 브로커를 활용하여, 이종 자원을 탐색하여 사용자에게 제공하는 기술이 필요하다. 본 논문에서는 다중 클라우드 자원 브로커 시스템의 구조를 제안하고, 이종 자원 탐색에 필요한 성능 지표와 LP 모델을 이용한 최적화 기법을 제안하고자 한다.

게임 풀이를 위한 NuSMV의 효율적인 반례 생성 (Efficient Counterexample Generation for Game Solving in NuSMV)

  • 권기현;이태훈
    • 정보처리학회논문지D
    • /
    • 제10D권5호
    • /
    • pp.813-820
    • /
    • 2003
  • 모델 검사는 모델이 속성을 만족하는지를 판정하기 위해서 모델의 상태 공간을 철저하게 조사한다. NuSMV는 모델 검사를 자동으로 수행하는 도구로서 본 논문에서는 이와 같은 NuSMV를 이용하여 푸쉬 푸쉬 게임을 해결한다. 모델이 속성을 만족하지 않는 경우 NuSMV는 그 이유를 설명하는 반례를 생성하게 되는데 NuSMV에 구현되어 있는 반례 생성 방식은 상태 공간을 2번 탐색하기 때문에 게임 풀이에 비효율적이다. 본 논문에서는 반례 생성시 상태 공간을 한 번만 탐색하도록 NuSMV를 재 구현 하였다. 그 결과 게임 풀이에 있어서 원래 NuSMV 보다 약 62%의 시간 절감과 11%의 공간 절감이 있었다.

비대면 실시간 온라인 수업을 위한 하브루타 학습모델 개발 및 적용가능성 탐색 (Development of a Havruta Learning model and exploring its applicability in non-face-to-face real-time online classes)

  • 변길희;최대훈;조우홍;윤경미
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.129-130
    • /
    • 2021
  • 본 연구의 목적은 학생의 주도적 학습을 돕는 하브루타 학습방법을 대학의 비대면 실시간 온라인 수업에서 활용할 수 있는 하브루타 학습모델 개발과 그 적용 가능성을 탐색하는 것이다. 이를 위해 온라인 학습환경에서 하브루타 학습법 적용사례에 대한 선행연구 고찰과 관련 이론들을 분석하고 하브루타 수업운영 경험자 2인의 인터뷰를 통해 비대면 실시간 온라인 수업 상황에서 적용 가능한 학습 모델안을 고안할 것이다. 이를 하브루타 수업 운영 경험이 풍부한 6인의 전문가를 대상으로 수업 모델안의 적절성과 적용가능성에 대한 평가를 실시하여 비대면 실시간 온라인 수업을 위한 하브루타 학습모델을 개발하고자 한다. 이 연구를 통해 비대면으로 수업을 해야 하는 상황에서도 학습자의 주도적 학습을 가능하게 함으로써 학습효과를 높여 미래 사회에 필요한 역량을 개발하는 데 기여할 수 있을 것이라고 기대한다.

  • PDF

회귀분석에서 설명변수와 반응변수 간의 시차를 파악하는 딥러닝 모델 (A Deep Learning Model for Identifying The Time Lag Between Explanatory Variables and Response Variable in Regression Analysis)

  • 김채현;류의림;이기용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.868-871
    • /
    • 2021
  • 기후, 경영, 경제 등 여러 분야의 회귀분석에서 설명변수가 반응변수에 일정 시차를 두고 영향을 미치는 경우들이 많다. 하지만 지금까지 대부분의 회귀분석은 설명변수가 반응변수에 즉각적으로 영향을 미치는 경우만을 가정하고 있으며, 설명변수와 반응변수 간에 존재하는 시차를 탐색하는 연구는 거의 이루어지지 않았다. 그러나 보다 정확한 회귀분석을 위해서는 설명변수와 반응변수 간에 존재하는 시차를 파악하는 것이 중요하다. 본 논문은 회귀분석 데이터가 주어졌을 때 설명변수와 반응변수 간에 존재하는 시차를 파악하는 딥러닝 모델을 제안한다. 제안하는 딥러닝 모델은 설명변수의 과거 값들 중 어떤 값이 현재 반응변수에 가장 큰 영향을 미치는지를 노드 간 가중치로 표현하고, 회귀모델의 오차를 최소화하는 가중치를 탐색한다. 훈련이 끝나면 이 가중치들을 사용하여 각 설명변수와 반응변수 간에 존재하는 시차를 파악한다. 실험을 통해 제안 방법은 시차를 고려하지 않는 기존 회귀모델에 비해 시차까지 고려함으로써 오차가 1/100 수준에 불과한 더 정확한 회귀모델을 찾을 수 있음을 확인하였다.

GMM 지원을 위해 k-means 알고리즘을 이용한 어휘 인식 성능 개선 (Vocabulary Recognition Performance Improvement using k-means Algorithm for GMM Support)

  • 이종섭
    • 디지털융복합연구
    • /
    • 제13권2호
    • /
    • pp.135-140
    • /
    • 2015
  • 일반적인 CHMM 어휘 인식 시스템은 어휘 인식에 대한 모델들의 관측 확률 인식률이 낮고, 일부 단위 음소 모델에만 적용되어 제한적으로 사용되는 문제점이 있다. 또한, 어휘 탐색에서 어휘의 의미가 다양하여 탐색된 어휘가 사용자의 요구에 부합되지 않는 문제점을 가진다. 이러한 문제를 개선하기 위해 GMM(Gaussian Mixture Model)을 이용한 음소인식을 수행하고, 개선된 k-means 알고리즘을 이용하여 어휘 특성에 따른 제한적인 탐색 문제점을 해결하였다. 성능 실험은 기존의 시스템과 비교하여 정확도와 재현율로 대변되는 효과성을 측정하였으며, 성능 실험 결과 정확도는 83%, 재현율은 67%로 나타났다.

퍼지 비가법 제어를 이용한 도시 교통망의 경로 탐색 (A Route Search of Urban Traffic Network using Fuzzy Non-Additive Control)

  • 이상훈;김성환
    • 대한교통학회지
    • /
    • 제21권1호
    • /
    • pp.103-113
    • /
    • 2003
  • 본 연구는 교통 경로 탐색 가운데, 우회 경로 탐색과 선호 경로 탐색을 하였으며, 계층 분석법을 적용한 퍼지비가법 제어기 사용을 제안한다. 이것은 기존의 경로 탐색과는 달리, 인간의 사고과정에 착안한 것으로, 애매한 주관적 판단을 정량적으로 분석, 평가하였다. 그리고 중요도를 운전 전문가로부터 의견 수렴한 것을 기초로 도출하였으며, 실제효용성을 진단하고자 경로 모델의 예를 사용하였다. 모델 평가는 평가 요소에 대한 속성 소속 함수화 및 평가치 규정, 계층 분석법에 의한 중요도 결정, $\lambda$-퍼지 척도에 의한 중요도의 비 가법적 표현, Choquet 퍼지 적분 등으로 수행하였다. 결국, 우회 경로 탐색 결과, 시시각각 변하는 교통환경에 적응할 수 있는 실 시간적인 교통 경로 제어가 가능하였으며, 선호 경로 탐색 결과, 본 연구의 알고리즘이 운전자 개인의 교통 경로 선택 성향을 잘 반영함을 보여 주었다. 논문은 5 가지의 중요한 의미가 있다. (1) 제안된 접근 방법은 운전자의 경로 선택 결정 과정과 유사하다. (2) 제안된 접근 방법은 다 속성의 경로 평가 기준을 제어 할 수 있다. (3) 제안된 접근 방법은 운전자의 주관적 판단을 비가법적으로 객관화 할 수 있다. (4) 제안된 접근 방법은 우회 경로 탐색에서 동적인 경로 탐색을 보여주고 있다 (5) 제안된 접근 방법은 선호 경로 탐색에서 개개 운전자 속성을 고려할 수 있다.

탐색구조 시스템에서의 RF 신호 기반 동역학 모델 적용 및 개발 (Development of Search and Rescue System with Dynamic Model by RF Signal Based LTE)

  • 정인철;김두원;안우근;이상욱
    • 한국위성정보통신학회논문지
    • /
    • 제12권4호
    • /
    • pp.120-124
    • /
    • 2017
  • 본 논문은 동역학 모델을 적용한 양방향 군 탐색구조 시스템의 시작품 제작에 대한 내용을 기술한다. USRP 개발 플랫폼과 단말기와 위성간의 통신을 상용 LTE망에 COSPAS-SARSAT 규격인 Spread Spectrum 방식의 신호체계를 USRP에 구현한 결과이다. 또한 구현된 결과의 정당성을 확인하기 위해 동역학 모델을 적용한 COSPAS-SARSAT 기반의 RF신호 처리를 USRP 테스트베드에 적용하여 실제적인 성능평가를 수행하였다. 향후 TDOA와 FDOA의 상관관계를 이용하는 CAF 알고리즘을 이용하여 보다 정확한 지상측위에 적용하고자 한다.