• Title/Summary/Keyword: 탄소호흡

Search Result 96, Processing Time 0.03 seconds

일산화탄소 제거를 위한 정화통용 첨착금속화합물 촉매의 특성

  • 박재만;김덕기;신채호;신창섭
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.11a
    • /
    • pp.301-304
    • /
    • 2002
  • 화재대피용 방독마스크의 주요한 기능은 상온에서의 일산화탄소 제거이며, 가장 효과적인 방법은 촉매에 의한 것이다. 일산화탄소 제거를 위한 호흡용 보호구의 정화통 충진재로써 범용으로 쓰이는 촉매는 Hopcalite로 Cu와 Mn이 혼합된 산화물 촉매이다. 그러나 이들 촉매는 상온에서 CO의 제거효율이 낮아 많은 양을 충진해야 하는 어려움이있다.(중략)

  • PDF

Analysis on the Results of Measured Concentration of the Combustion Gases Considering Respiration Characteristics in Gasoline Pool Fire (가솔린 풀 화재에서 인체 호흡량 변화를 고려한 연소가스 농도 측정 결과 분석)

  • Choi, Seung Il;Kang, Jung Ki;You, Woo Jun
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.83-88
    • /
    • 2019
  • This study examined the concentration of combustion gases while considering low ventilation and respiration frequency. A one-quarter-size ISO 9705 room corner test was performed. The concentrations of carbon monoxide and oxygen were measured in each case with the continuous inhalation of combustion gas with low ventilation (2, 6, and 10 LPM) and different respiration frequencies (2 s, 5 s, and infinity). The combustion of a gasoline pool fire in the compartment had a theoretical heat release rate of 5.34 kW. The results show that the deviation of the gas concentrations becomes higher as the low ventilation increases compared to the respiration frequency. In addition, as the respiration frequency increases, the variation in the minimum oxygen concentration is larger than the average value, while in the case of carbon monoxide, the variation in the average value is larger than the maximum value. These results show that the inhalation characteristics of refugees should be considered to investigate fires.

Discussion of Soil Respiration for Understanding Ecosystem Carbon Cycle in Korea (생태계 탄소순환 이해를 위한 국내 토양호흡 연구의 고찰)

  • Lee, Jae-Ho;Yi, Jun-Seok;Chun, Young-Moon;Chae, Nam-Yi;Lee, Jae-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.310-318
    • /
    • 2013
  • In territorial ecosystem, soil has stored considerable amount of carbon, and it is vulnerable to weakness release much of the carbon to atmosphere. In this study, we have been effort realization and discussion to the error between inter-instruments and measurement methods, time and special variations, gap filling and separation from each source included in soil respiration, used to collect soil respiration data in various ecosystems in Korea. In conclusion, it have to collect calibration data throughout comparison test between methods and instruments because accumulated data from past and accumulating data in present did not calibrated. In predicting change of soil carbon dynamic using the model method, it needs important data such as longterm and short-term data, artificial handling data of major factor, data from various ecosystem, soil texture, soil depth etc. In company with, we should collect highly qualified data through deep consideration of present problems.

The Relationship between Arterial and End-tidal Partial Pressures of CO$_{2}$ in Halothane-anesthetized Heavy Breed Horses with respect to Operative Positions and the Modes of Ventilation (Halothane으로 마취된 거대말에서 수술자세와 호흡방법에 따른)

  • 안경아;권오경;산권명부;권구청;산안칙부
    • Journal of Veterinary Clinics
    • /
    • v.14 no.2
    • /
    • pp.238-243
    • /
    • 1997
  • 체중이 700-750kg 인 4마리의 중종마에 70분동안 마취를 실시하여 동맥혈의 이 산화탄소 분압과 호기말 가스내의 이산화탄소 분압 사이의 관계를 관찰하였다. 마취도중 자발 호흡, 인공호흡 1(흡기시간 2.0초), 인공호흡 2(흡기시간 2.5초)를 각각 30분,20분,20분씩 실시하였으며 매 10분마다 동맥혈가스분석과 호기말 가스내 이산화탄소분압 측정을 실시하 였다. 동시에 혈압, 심전도, 체온측정을 실시하여 마취된 환축의 상태를 관찰하였다. 2주후에 자세를 달리하여(앙와에서 측와로) 같은 방법으로 재 실험하였다. 호기말 이산화탄소분압은 동맥혈에서보다 평균 10 mmHg 정도 낮은 양상을 보였으나 높은 상관관계를 보였으며 자세에 따른 유의적 차이는 업었다(앙와자세; r=0.949, 측와자세; r=0.920, P<0.01). 이러한 결과를 토 대로 조직에 창상을 줄 수 있는 동맥혈 가스분석 대신 비침습적방법인 호기말 가스내 이산화 탄소 분압을 측정하는 것이 환축의 모니터링에 효과적으로 사용 가능하다는 것을 알 수 있었다.

  • PDF

Comparison of Carbon Storages, Annual Carbon Uptake and Soil Respiration to Planting Types in Urban Park - The Case Study of Dujeong Park in Cheonan City - (도시공원 식재유형별 탄소저장량, 연간 탄소흡수량 및 토양호흡량 비교 - 천안시 두정공원을 중심으로 -)

  • Han, Mi-Kyoung;Kim, Kyeong-Jin;Yang, Keum-Chul
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.2
    • /
    • pp.142-149
    • /
    • 2014
  • This study has compared carbon storages, annual carbon uptakes and annual soil respiration by planting type in Dujeong park, Cheonan city. Four plantations were selected in Dujeong park: Pinus densiflora plantation, Quercus acutissima community, Quercus acutissima-Robinia pseudoacacia plantation, and Robinia pseudoacacia plantation. We investigated each plantations from February 2012 to March 2013. Carbon storage and annual carbon uptake in each plantations were calculated with allometric method (Lee, 2003), and soil respiration was measured by using LI-6400 (LI-COR). Carbon storages in Pinus densiflora plantation, Quercus acutissima community, Quercus acutissima-Robinia pseudoacacia plantation, and Robinia pseudoacacia plantation were $17.36tonCha^{-1}$, $88.63tonCha^{-1}$, $115.38tonCha^{-1}$ and 4$9.88tonCha^{-1}$, and annual carbon uptakes were $1.04tonCha^{-1}yr^{-1}$, $2.12tonCha^{-1}yr^{-1}$, $6.47tonCha^{-1}yr^{-1}$ and $3.67tonCha^{-1}yr^{-1}$, respectively. Average annual carbon uptakes per tree of Pinus densiflora plantation, Quercus acutissima community and Robinia pseudoacacia plantation were $1.81kgC{\cdot}treeyr^{-1}$, $17.86kgC{\cdot}treeyr^{-1}$ and $9.14kgC{\cdot}treeyr^{-1}$ and Quercus acutissima was the greatest. The amounts of carbon released from soil respiration in the same four plantations were $2.20{\mu}molCO_2m^{-2}s^{-1}$, $1.90{\mu}molCO_2m^{-2}s^{-1}$, $2.47{\mu}molCO_2m^{-2}s^{-1}$ and $2.51{\mu}molCO_2m^{-2}s^{-1}$, and annual soil respiration were estimated $6.66tonCha^{-1}yr^{-1}$, $5.33tonCha^{-1}yr^{-1}$, $7.20tonCha^{-1}yr^{-1}$ and $7.25tonCha^{-1}yr^{-1}$, respectively. In this study area, Quercus acutissima-Robinia pseudoacacia plantation has a significant contribution to the role of carbon sink. However, the contribution of Pinus densiflora plantation was evaluated less. The results of this study can be used as the necessary data for tree planting and management in urban park.

Leaf gas exchange of Hibiscus hamabo and soil respiration in its habitats on Jeju Island (제주도 황근(Hibiscus hamabo) 잎의 기체 교환과 자생지에서의 토양호흡)

  • Yoojin Choi;Gwang-Jung Kim;Jeongmin Lee;Hyung-Sub Kim;Yowhan Son
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.439-446
    • /
    • 2023
  • Mangroves are distributed in intertidal zones of coastal environments or estuarine margins, playing a critical role in the global carbon cycle. However, understanding of the carbon cycle role of mangrove associates in the Republic of Korea is still limited. This research measured soil respiration and leaf gas exchange in three habitats of Hibiscus hamabo(Gimnyeong, Seongsan, and Wimi) and analyzed the impacts on sites and months. Soil respiration was measured once a month from June to October 2022 and leaf gas exchange was measured monthly from June to September 2022. Soil respiration in August(5.7±0.8 μmol CO2 m-2 s-1) was significantly higher than that in other months (p<0.001) and soil respiration increased as air temperature increased (p<0.001). In Seongsan, net photosynthesis in July(9.0±0.9μmol m-2 s-1) was significantly higher than that in other months (p<0.001). Net photosynthesis increased as stomatal conductance and transpiration rate increased during the entire period(p<0.001). Furthermore, a weak positive linear relationship was observed between soil respiration and net photosynthesis (r2=0.12; p<0.01). The results indicated that soil respiration was influenced not only by air temperature and season but also by net photosynthesis. This study is expected to provide basic information on the carbon dynamics of mangrove associates.

Coarse Woody Debris (CWD) Respiration Rates of Larix kaempferi and Pinus rigida: Effects of Decay Class and Physicochemical Properties of CWD (일본잎갈나무와 리기다소나무 고사목의 호흡속도: 고사목의 부후등급과 이화학적 특성의 영향)

  • Lee, Minkyu;Kwon, Boram;Kim, Sung-geun;Yoon, Tae Kyung;Son, Yowhan;Yi, Myong Jong
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.1
    • /
    • pp.40-49
    • /
    • 2019
  • Coarse woody debris (CWD), which is a component of the forest ecosystem, plays a major role in forest energy flow and nutrient cycling. In particular, CWD isolates carbon for a long time and is important in terms of slowing the rate of carbon released from the forest to the atmosphere. Therefore, this study measured the physiochemical characteristics and respiration rate ($R_{CWD}$) of CWD for Larix kaempferi and Pinus rigida in temperate forests in central Korea. In summer 2018, CWD samples from decay class (DC) I to IV were collected in the 14 forest stands. $R_{CWD}$ and physiochemical characteristics were measured using a closed chamber with a portable carbon dioxide sensor in the laboratory. In both species, as CWD decomposition progressed, the density ($D_{CWD}$) of the CWD decreased while the water content ($WC_{CWD}$) increased. Furthermore, the carbon concentrations did not significantly differ by DC, whereas the nitrogen concentration significantly increased and the C/N ratio decreased. The respiration rate of L. kaempferi CWD increased significantly up to DC IV, but for P. rigida it increased to DC II and then unchanged for DC II-IV. Accordingly, except for carbon concentration, all the measured characteristics showed a significant correlation with $R_{CWD}$. Multiple linear regression showed that $WC_{CWD}$ was the most influential factor on $R_{CWD}$. $WC_{CWD}$ affects $R_{CWD}$ by increasing microbial activity and is closely related to complex environmental factors such as temperature and light conditions. Therefore, it is necessary to study their correlation and estimate the time-series pattern of CWD moisture.

Analysis of the Substrate Removal Characteristics of TPA Using OUR and NUR Tests, and Simulation with ASM1 (호흡률과 탈질률 실험과 ASM1을 이용한 전산모사를 통한 TPA의 기질 분해 특성 평가)

  • Jung, In-Chul;Lee, Sung-Hak;Sung, Nak-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.9
    • /
    • pp.926-934
    • /
    • 2006
  • In this study, nitrate uptake rate(NUR) and oxygen uptake rate(OUR) tests were conducted for the assessment of application of Terephtalic acid(TPA) by-product as an alternative external carbon source for sewage treatment plant(STP). With the ASM1 installed in GPS-X the substrate removal characteristic was investigated with simulation by obtained data from NUR and OUR test. As a result, the fraction of RBDCOD(readily biodegradable COD) was mort than 90% and specific denitrification rate was observed about 8.00 mg $NO_3^-$-N/g VSS/hr that was similar to conventional external carbon source. In the next step, sensitivity analysis for heterotrophic biomass in ASM1 was conducted. Optimized parameters of ${\mu}_{max,H}$, $K_s$, ${\eta}_g$, and $b_H$ were 6.60/day, 23.3 mg/L, 0.88, and 0.54/day, respectively. Then, relative mean squared error(RMSE) was reduced to about 40%. Optimized parameters value were well corresponded with the substrate removal characteristics of high maximum and final endogenous specific OUR and high specific NUR.

Distribution and absorption of Organic Carbon in Quercus mongolica and Pinus densiflora Forest at Mt. Gumgang in Seosan (서산지역 금강산 신갈나무림과 소나무림의 유기탄소 분포 및 흡수량)

  • Won, Ho-Yeon;Kim, Deok-Ki;Han, Areum;Lee, Young-Sang;Mun, Hyeong-Tae
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.2
    • /
    • pp.243-252
    • /
    • 2016
  • Comparison of Organic carbon in the Quercus mongolica and Pinus densiflora forest at Mt. Gumgang were investigated. Carbon in above and below ground standing biomass, litter layer, and soil organic carbon were measured from September 2013 through August 2014. For the estimation of carbon cycling, soil respiration was measured. The amount of carbon allocated to above and below ground biomass in Q. mongolica and P. densiflora forest was 115.07/34.36, $28.77/8.59ton\;C\;ha^{-1}$, respectively. Amount of organic carbon in annual litterfall in Q. mongolica and P. densiflora forest was 4.89, $6.02ton\;C\;ha^{-1}$, respectively. Amount of organic carbon within 50cm soil depth was 132.78, $59.72ton\;C\;ha^{-1}$ $50cm-depth^{-1}$, respectively. Total amount of organic carbon in Q. mongolica and P. densiflora forest estimated to 281.52, $108.69ton\;C\;ha^{-1}$, respectively. Amount of organic carbon returned to the forest via litterfall in Q. mongolica and P. densiflora forest was 2.83, $2.20ton\;C\;ha^{-1}$, respectively. The amount of organic carbon absorbed from the atmosphere of this Q. mongolica and P. densiflora forest was 3.90, $0.81ton\;C\;ha^{-1}yr^{-1}$ respectively. Absorption of organic carbon in Q. mongolica forest was remarkably higher than P. densiflora forest.

Carbon Budget of Pine Forest in Serpentine Area (사문암 지역 소나무림의 탄소수지 연구)

  • Yang, Keum-Chul;Namkung, Hyunmin;Kim, Jeong-Seob;Han, Mi-Kyoung;Shim, Jae-Kuk
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.6
    • /
    • pp.676-685
    • /
    • 2018
  • This study is to compare carbon budget between serpentine sites and non-serpentine sites dominated by Pinus densiflora forest in the Andong serpentine area where has high values of magnesium and low values of calcium, and are usually deficient in nitrogen and phosphorus, but rich in heavy metals such as nickel, chrome, cobalt, etc. and to measure soil $CO_2$ efflux and environmental factors between January 2017 and December 2017. Soil $CO_2$ efflux was measured with LI-6400 once a month; the soil temperature at 10 cm depth, air temperature, soil moisture contents, and solar radiation were measured in continuum. Soil $CO_2$ efflux in the serpentine area and non-serpentine were $151.71{\pm}75.09g\;CO_2{\cdot}m^{-2}month^{-1}$(42.48 ~ 262.61 g $CO_2{\cdot}m^{-2}month^{-1}$) and $165.09{\pm}118.96g\;CO_2{\cdot}m^{-2}month^{-1}$(20.94 ~ 449.24 g $CO_2{\cdot}m^{-2}month^{-1}$), respectively. Carbon storage in the serpentine area and non-serpentine area were 91.90, $222.85ton{\cdot}ha^{-1}$, respectively. Carbon absorption in the serpentine area and non-serpentine area were 7.99, $17.41ton{\cdot}ha^{-1}yr^{-1}$, respectively. Carbon budget in the serpentine area and non-serpentine area were absorbs 5.3, $14.49ton{\cdot}Cha^{-1}yr^{-1}$, respectively.