DOI QR코드

DOI QR Code

생태계 탄소순환 이해를 위한 국내 토양호흡 연구의 고찰

Discussion of Soil Respiration for Understanding Ecosystem Carbon Cycle in Korea

  • Lee, Jae-Ho (Department of Biological Sciences, Konkuk University) ;
  • Yi, Jun-Seok (Department of Biological Sciences, Konkuk University) ;
  • Chun, Young-Moon (Department of Biological Sciences, Konkuk University) ;
  • Chae, Nam-Yi (Department of Biological Sciences, Konkuk University) ;
  • Lee, Jae-Seok (Department of Biological Sciences, Konkuk University)
  • 투고 : 2013.06.05
  • 심사 : 2013.06.12
  • 발행 : 2013.06.30

초록

육상생태계의 토양에는 대기의 약 2배에 해당하는 많은 양의 탄소를 가지고 있으며, 기후변화에 의한 기온 상승으로 대기로의 방출에 매우 취약한 상황에 놓여 있다. 한반도의 육상 생태계 토양탄소 수지의 변화예측을 위해 필연적으로 요구되는 다양한 생태계의 토양호흡 자료 수집을 위해 이용되는 방법론, 기기, 기기들 간의 오차, 시공간적인 불균일성, 결측 자료에 대한 보충 (gap filling), 발생원 별 구분 등에 대한 현 상황을 정리하고 그를 바탕으로 국내 토양호흡 연구의 문제점과 과제에 대해 고찰하였다. 결론적으로 국내의 토양호흡 연구는 기기 간 또는 방법들 간의 오차 보정이나 노력들이 매우 빈약하게 행해져 왔기 때문에 과거 및 현재 축적되는 자료의 품질은 거의 보정되지 않은 상태로 볼 수 있다. 이러한 문제점들이 해소되지 않고 지금까지와 같은 방식으로 토양호흡 자료가 축적된다면 그 활용성은 매우 낮을 수 밖에 없다. 또한 장기적인 자료 축적, 토양호흡 조절 메커니즘에 관한 조절 실험, 다양한 생태계, 토성, 토심 등에 대한 자료 역시 장래의 토양권 탄소 동태 변화를 모델 수단으로 예측하는 데에는 매우 중요한 요소이므로 토양호흡 자료 수집과 함께 수집되어야 할 것이다. 더불어 장기적인 측면에서 이러한 문제들이 연구자 간에 깊숙이 인식되어 보다 양질의 자료가 생산되도록 노력할 필요가 있다.

In territorial ecosystem, soil has stored considerable amount of carbon, and it is vulnerable to weakness release much of the carbon to atmosphere. In this study, we have been effort realization and discussion to the error between inter-instruments and measurement methods, time and special variations, gap filling and separation from each source included in soil respiration, used to collect soil respiration data in various ecosystems in Korea. In conclusion, it have to collect calibration data throughout comparison test between methods and instruments because accumulated data from past and accumulating data in present did not calibrated. In predicting change of soil carbon dynamic using the model method, it needs important data such as longterm and short-term data, artificial handling data of major factor, data from various ecosystem, soil texture, soil depth etc. In company with, we should collect highly qualified data through deep consideration of present problems.

키워드

참고문헌

  1. Aanderud, Z.T., S.E. Jones, D.R. Schoolmaster Jr., N. Fierer and J.T. Lennon. 2013. Sensitivity of soil respiration and microbial communities to altered snowfall. Soil Biology & Biochemistry 57: 217-227. https://doi.org/10.1016/j.soilbio.2012.07.022
  2. Buchmann, N. 2000. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology and Biochemistry 32: 1625-1635. https://doi.org/10.1016/S0038-0717(00)00077-8
  3. Burton, A.J., K.S. Pregitzer, G.P. Zogg and D.R. Zak. 1998. Drought reduces root respiration in sugar maple forests. Ecological Application 8: 771-778. https://doi.org/10.1890/1051-0761(1998)008[0771:DRRRIS]2.0.CO;2
  4. Burton, A.J., K.S. Pregitzer, R.W. Ruess, R.L. Hendrick and M.F. Allen. 2002. Root respiration in North American forests: effects of nitrogen concentration and temperature across biomes. Oecologia 131: 559-568. https://doi.org/10.1007/s00442-002-0931-7
  5. Chae, N.Y., R.H. Kim, S.U. Suh, T.H. Hwang, J.S. Lee, Y.H. Son, D.W. Lee and J. Kim. 2005. Intercomparison experiment of chamber methods for soil respiration measurement using on phytotron System. Korean Journal of Agricultural and Forest Meteorology 7(1): 107-114.
  6. Cheng, W. 1996. Measurement of rhizosphere respiration and organic matter decomposition using natural 13C. Plant & Soil 183: 263-268. https://doi.org/10.1007/BF00011441
  7. Cheng, W.D., C. Coleman, C.C. Carrol and C.A. Hoffman. 1993. In situ measurement of root respiration and soluble C concentrations in the rhizosphere. Soil Biology & Biochemistry 25: 1189-1196. https://doi.org/10.1016/0038-0717(93)90214-V
  8. Del Grosso, S.J., W.J. Parton, A.R. Mosier, E.A. Holland, E. Pendall, D.S. Schmel and D.S. Ojima. 2005. Modeling soil $CO_2$ emission from ecosystems. Biogeochemistry 73: 71-91. https://doi.org/10.1007/s10533-004-0898-z
  9. DOE. 1999. Carbon sequestration. State of the science. US Department of Energy (DOE), Washington, DC.
  10. Epron, D., L. Farque, E. Lucot and P.M. Badot. 1999. Soil $CO_2$ efflux in a beech forest: dependence on soil temperature and soil water content. Annual Forest Science 56: 221-226. https://doi.org/10.1051/forest:19990304
  11. Fang, C. and J.B. Moncrieff. 2001. The dependence of soil $CO_2$ efflux on temperature. Soil Biology & Biochemistry 33: 155-165. https://doi.org/10.1016/S0038-0717(00)00125-5
  12. Fang, C., J.B. Moncrieff, H.L. Gholz and K.L. Clark. 1998. Soil $CO_2$ efflux and its spatial variation in a Florida slash pine plantation. Plant and Soil 205: 135-146. https://doi.org/10.1023/A:1004304309827
  13. Hanson, P.J., N.T. Edwards, C.T. Garten and J.A. Andrews. 2000. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 48: 115-146. https://doi.org/10.1023/A:1006244819642
  14. Hibbard, K.A., B.E. Law, M. Reichsteine and J. Sulzman. 2005. An analysis of soil respiration across northern hemisphere temperate ecosystems. Biogeochemistry 73: 29-70. https://doi.org/10.1007/s10533-004-2946-0
  15. IGBP. 1998. Terrestrial carbon working group. The terrestrial carbon cycle. Implications for the Kyoto protocol. Science 280: 1393-1394. https://doi.org/10.1126/science.280.5368.1393
  16. Kirita, H. 1971. Re-examination of the absorption method of measuring soil respiration under field conditions. IV. An improved absorption method using a disc of plastic sponge as absorbent holder. Japan Journal of Ecology 21: 230-244. (in Japanese with English abstract)
  17. Kucera, C.L. and D.R. Kirkham. 1971. Soil respiration studies in tall grass prairie in Missouri. Ecology 52: 912-915. https://doi.org/10.2307/1936043
  18. Larionova, A.A., D.V. Sapronov, V.O. Lopes de Gerenyu, L.G. Kuznetsova and V.N Kudeyarov. 2005. Contribution of Rhizomicrobial and Root Respiration to the $CO_2$ Emission from Soil (A Review). Soil Biology 7: 842-854.
  19. Lee, E.H., J.H. Lim and J.S. Lee. 2010. A review on soil respiration measurement and its application in Korea. Korean Journal of Agricultural and Forest Meteorology 12(4): 264-276. https://doi.org/10.5532/KJAFM.2010.12.4.264
  20. Lee, M.S. 2003. Method for assessing forest carbon sinks by ecological processing-based approach-a case study for Takayama station, Japan. The Korean Journal of Ecology 26: 289-296. https://doi.org/10.5141/JEFB.2003.26.5.289
  21. Liang, N., G. Inoue and Y. Fujinuma. 2003. A multi-channel automated chamber system for continuous measurements of forest soil $CO_2$ efflux. Tree Physiology 23: 825-832. https://doi.org/10.1093/treephys/23.12.825
  22. Liu, Q., N.T. Edwards, W.M. Post, L. Gu, J. Ledford and S. Lenhart. 2006. Temperature-independent diel variation in soil respiration observed from a temperate deciduous forest. Global Change Biology 12: 2136-2145.
  23. Liu, X., S. Wan, B. Su, D. Hui and Y. Luo. 2002. Response of soil $CO_2$ efflux to water manipulation in a tallgrass prairie ecosystem. Plant and Soil 240: 213-223. https://doi.org/10.1023/A:1015744126533
  24. Lloyd, J. and J.A. Taylor. 1994. On the temperature dependence of soil respiration. Functional Ecology 8: 315-323. https://doi.org/10.2307/2389824
  25. Lund, V. and J. Goksøyr. 1980. Effects of water fluctuations on microbial mass and activity in soil. Microbial Ecology 6: 115-123. https://doi.org/10.1007/BF02010550
  26. Maier, C.A. and L.W. Kress. 2000. Soil $CO_2$ evolution and root respiration in 11 year-old loblolly pine (Pinus taeda) plantations as affected by moisture and nutrient availability. Canadian Journal of Forest Resource 30: 347-359. https://doi.org/10.1139/cjfr-30-3-347
  27. Nakadai, T., H. Koizumi, Y. Usami, M. Satoh and T. Oikawa. 1993. Examination of the method for measuring soil respiration in cultivated land: Effect of carbon dioxide concentration on soil respiration. Ecological Research 8: 65-71. https://doi.org/10.1007/BF02348608
  28. Nakadai, T., M. Yokogawa, H. Ikeda and H. Koizumi. 2002. Diurnal changes of carbon dioxide flux from bare soil in agricultural field in Japan. Application of Soil Ecology 19: 161-171. https://doi.org/10.1016/S0929-1393(01)00180-9
  29. Nakane, K., M. Yamamamoto and T. Hiroyuki. 1983. Estimating root respiration rate in a mature forest ecosystem. Japanese Journal of Ecology 33: 397-408.
  30. Norman, J.M., R. Garcia and S.B. Verma. 1992. Soil surface $CO_2$ fluxes and the carbon budget of a grassland. Journal of Geophysical Research 97(D17) 18: 845-18,853.
  31. Parker, L.W., J. Miller, Y. Steinberger and E.G. Whitford. 1983. Soil respiration in a Chihuahuan desert rangeland. Soil Biology & Biochemistry 15: 303-309. https://doi.org/10.1016/0038-0717(83)90075-5
  32. Pumpanen, J., H. Ilvesniemi, P. Keronen, A. Nissnen, T. Pohja, T. Vesala and P. Hari. 2001. An open chamber system for measuring soil surface $CO_2$ efflux; Analysis of error source related to the chamber system. Journal of Geophysical Research 106: 7985-7992. https://doi.org/10.1029/2000JD900715
  33. Raich, J.W., R.D. Bowden and P.A. Steudler. 1990. Comparison of two static chamber techniques for determining carbon dioxide efflux from forest soils. Soil Science Society American Journal 54: 1754-1757. https://doi.org/10.2136/sssaj1990.03615995005400060041x
  34. Rayment, M.B. and P.G. Javis. 2000. Temporal and spatial variation of soil $CO_2$ efflux in a Canadian boreal forest. Soil Biology & Biochemistry 32: 35-45. https://doi.org/10.1016/S0038-0717(99)00110-8
  35. Rout, S.K. and S.R. Gupta. 1989. Soil respiration in relation to abiotic factors, forest floor litter, root biomass and litter quality in forest ecosystems of Siwaliks in northern India. Acta Oecologica 10: 229-244.
  36. Ryan, M.G. and B.E. Law. 2005. Interpreting, measuring, and modeling soil respiration. Biogeochemistry 73: 3-27. https://doi.org/10.1007/s10533-004-5167-7
  37. Saigusa, N., S. Yamamoto, S. Murayama, H. Kondo and N. Nishimura. 2002. Gross primary production and net ecosystem production of a cool-temperate deciduous forest estimated by the eddy covariance method. Agricultural and Forest Meteorology 112: 203-215. https://doi.org/10.1016/S0168-1923(02)00082-5
  38. Son, Y.H., G. Lee and J.Y. Hong. 1994. Soil carbon dioxide evolution in three deciduous tree plantations. Korean Journal of Soil Science and Fertilizer 27(4): 290-295.
  39. Son, Y.H. and H.W. Kim. 1996. Soil respiration in Pinus rogoda and Larnix leptolepis plantation. Journal of Korean Forest Society 85: 496-505.
  40. Suh, S.U., Y.M. Chun, N.Y. Chae, J. Kim, J.H. Lim, M. Yokozawa and J. Lee. 2005a. A chamber system with automatic open and closing for continuously measuring soil respiration based on an open-flow dynamic method. Ecological Research 21: 406-414.
  41. Suh, S.U., Y.K Min and J.S. Lee. 2005b. Seasonal variation of contribution of leaf-litter decomposition rate in soil respiration in temperate deciduous forest. Korean Journal of Agricultural and Forest Meteorology 7(1): 57-65.
  42. Tamai, K. 2010. Effects of environmental factors and soil properties on topographic variations of soil respiration. Biogeoscience 7: 1133-1142. https://doi.org/10.5194/bg-7-1133-2010
  43. Waring, R.H. and S.W. Running. 1998. Forest ecosystem. Analysis at multiple scale. Academic Press, pp. 67.
  44. Witkamp, M. 1966. Decomposition of leaf litter in relation to environment, microflora and microbial respiration. Ecology 47: 194-201. https://doi.org/10.2307/1933765
  45. Yuste, J., I. Curiel, A. Janssens and R. Cuelemans. 2005. Calibration and validation of an empirical approach to model soil $CO_2$ efflux in a deciduous forest. Biogeochemistry 73: 209-230. https://doi.org/10.1007/s10533-004-7201-1