DOI QR코드

DOI QR Code

Leaf gas exchange of Hibiscus hamabo and soil respiration in its habitats on Jeju Island

제주도 황근(Hibiscus hamabo) 잎의 기체 교환과 자생지에서의 토양호흡

  • Yoojin Choi (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Gwang-Jung Kim (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Jeongmin Lee (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Hyung-Sub Kim (Institute of Life Science and Natural Resources Research, Korea University) ;
  • Yowhan Son (Department of Environmental Science and Ecological Engineering, Korea University)
  • 최유진 (고려대학교 환경생태공학과) ;
  • 김광중 (고려대학교 환경생태공학과) ;
  • 이정민 (고려대학교 환경생태공학과) ;
  • 김형섭 (고려대학교 생명자원연구소) ;
  • 손요환 (고려대학교 환경생태공학과)
  • Received : 2023.07.31
  • Accepted : 2023.11.08
  • Published : 2023.12.31

Abstract

Mangroves are distributed in intertidal zones of coastal environments or estuarine margins, playing a critical role in the global carbon cycle. However, understanding of the carbon cycle role of mangrove associates in the Republic of Korea is still limited. This research measured soil respiration and leaf gas exchange in three habitats of Hibiscus hamabo(Gimnyeong, Seongsan, and Wimi) and analyzed the impacts on sites and months. Soil respiration was measured once a month from June to October 2022 and leaf gas exchange was measured monthly from June to September 2022. Soil respiration in August(5.7±0.8 μmol CO2 m-2 s-1) was significantly higher than that in other months (p<0.001) and soil respiration increased as air temperature increased (p<0.001). In Seongsan, net photosynthesis in July(9.0±0.9μmol m-2 s-1) was significantly higher than that in other months (p<0.001). Net photosynthesis increased as stomatal conductance and transpiration rate increased during the entire period(p<0.001). Furthermore, a weak positive linear relationship was observed between soil respiration and net photosynthesis (r2=0.12; p<0.01). The results indicated that soil respiration was influenced not only by air temperature and season but also by net photosynthesis. This study is expected to provide basic information on the carbon dynamics of mangrove associates.

맹그로브는 육지와 바다 사이 조간대에 서식하는 식물집단으로, 전지구 탄소 순환에서 중요한 역할을 한다. 그러나 국내에 자생하는 맹그로브 관련 수종의 탄소 순환에 관한 연구는 진행된 바가 없다. 본 연구는 준맹그로브인 황근(Hibiscus hamabo) 자생지 3곳(김녕, 성산, 위미)에서 토양호흡과 잎의 기체 교환을 주기적으로 측정하고 이에 영향을 미치는 요인을 파악하고자 하였다. 토양호흡은 2022년 6월부터 10월까지, 잎의 기체 교환은 6월부터 9월까지 각 월1회씩 측정하였다. 8월의 토양호흡(5.7±0.8 μmol CO2 m-2 s-1)은 다른 달에 비해 유의하게 높았으며(p<0.001), 기온이 증가함에 따라 토양호흡이 증가하였다(p<0.01). 7월에 성산에서의 순광합성률은 9.0±0.9 μmol m-2 s-1로 다른 시기보다 높게 나타났으며(p<0.001), 전체 기간 동안 모든 대상지에서 순광합성률은 기공전도도와 증산속도가 증가할수록 증가하였다(p<0.001). 토양호흡은 순광합성률과 양의 선형관계(r2=0.12; p<0.01)를 나타내었다. 이러한 결과는 토양호흡이 계절을 동반한 기온뿐만 아니라 광합성에 의한 CO2 흡수에 영향을 받기 때문인 것으로 보인다. 본 연구는 향후 준맹그로브 수종의 탄소 동태 분석에 기초 자료로 활용될 수 있을 것이다.

Keywords

Acknowledgement

이 논문은 한국연구재단(NRF-2021R1A6A1A10045235), 정인욱학술장학재단(Chunginwook Scholarship Foundation)과 산림청 탄소흡수원 특성화대학원 사업의 지원을 받아 수행된 연구 결과의 일부임.

References

  1. Ahn YH. 2003. Distribution of native Hibiscus hamabo and ecological characteristics of naturally inhabited areas in Jeju Island. Hortic. Sci. Technol. 21:440-446.
  2. Ahn YH, KH Chung and HS Park. 2003. Vegetation and flora of Hibiscus hamabo inhabited naturally in Soan Island. J. Environ. Sci. Int. 12:1181-1187. https://doi.org/10.5322/jes.2003.12.11.1181
  3. Alongi DM. 2014. Carbon cycling and storage in mangrove forests. Annu. Rev. Mar. Sci. 6:195-219. https://doi.org/10.1146/annurev-marine-010213-135020
  4. Andrews TJ and GJ Muller. 1985. Photosynthetic gas exchange of the mangrove, Rhizophora stylosa Griff., in its natural environment. Oecologia 65:449-455. https://doi.org/10.1007/bf00378922
  5. Bahn M, M Schmitt, R Siegwolf, A Richter and N Bruggemann. 2009. Does photosynthesis affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale? New Phytol. 182:451-460. https://doi.org/10.1111/j.1469-8137.2008.02755.x
  6. Ball MC. 1988. Ecophysiology of mangroves. Trees 2:129-142. https://doi.org/10.1007/bf00196018
  7. Chen L, ZT Liu, GX Han, XJ Chu, BY Sun, HF Liu and JW Li. 2016. Effects of environmental and biotic factors on soil respiration in a coastal wetland in the Yellow River Delta, China. J. Appl. Ecol. 27:1795-1803. https://doi.org/10.13287/j.1001-9332.201606.003
  8. Cleveland CC, DR Nemergut, SK Schmidt and AR Townsend. 2007. Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 82:229-240. https://doi.org/10.1007/s10533-006-9065-z
  9. Cui X, J Liang, W Lu, H Chen, F Liu, G Lin, F Xu, Y Luo and G Lin. 2018. Stronger ecosystem carbon sequestration potential of mangrove wetlands with respect to terrestrial forests in subtropical China. Agric. For. Meteorol. 249:71-80. https://doi.org/10.1016/j.agrformet.2017.11.019
  10. Damour G, T Simonneau, H Cochard and L Urban. 2010. An overview of models of stomatal conductance at the leaf level. Plant Cell Environ. 33:1419-1438. https://doi.org/10.1111/j.1365-3040.2010.02181.x
  11. Davidson E, E Belk and RD Boone. 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob. Change Biol. 4:217-227. https://doi.org/10.1046/j.1365-2486.1998.00128.x
  12. Dilly O, S Nii-Annang, G Franke, T Fischer, F Buegger and A Zyakun. 2011. Resilience of microbial respiration, respiratory quotient and stable isotope characteristics to soil hydrocarbon addition. Soil Biol. Biochem. 43:1808-1811. https://doi.org/10.1016/j.soilbio.2010.09.026
  13. Endres L. 2010. Photosynthesis and water relations in Brazilian sugarcane. Open Agric. J. 4:31-37. https://doi.org/10.2174/1874331501004010031
  14. Farquhar GD and TD Sharkey. 1982. Stomatal conductance and photosynthesis. Ann. Rev. Plant Physiol. 33:317-345. https://doi.org/10.1146/annurev.pp.33.060182.001533
  15. Flexas J, J Bota, F Loreto, G Cornic and TD Sharkey. 2004. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol. 6:269-279. https://doi.org/10.1055/s-2004-820867
  16. Fu S, W Cheng and R Susfalk. 2002. Rhizosphere respiration varies with plant species and phenology: A greenhouse pot experiment. Plant Soil 239:133-140. https://doi.org/10.1023/a:1014959701396
  17. Gao W, Z Huang, G Ye, X Yue and Z Chen. 2018. Effects of forest cover types and environmental factors on soil respiration dynamics in a coastal sand dune of subtropical China. J. For. Res. 29:1645-1655. https://doi.org/10.1007/s11676-017-0565-6
  18. Hardie M and R Doyle. 2012. Measuring soil salinity. pp. 415-425. In: Plant Salt Tolerance. Methods in Molecular Biology, vol. 913 (Shabala S and T Cuin, eds.). Humana Press. Totowa, NJ, USA. https://doi.org/10.1007/978-1-61779-986-0_28
  19. Hibbard KA, BE Law, M Reichstein and J Sulzman. 2005. An analysis of soil respiration across northern hemisphere temperate ecosystems. Biogeochemistry 73:29-70. https://doi.org/10.1007/s10533-004-2946-0
  20. Hogberg P, A Nordgren, N Buchmann, AFS Taylor, A Ekblad, MN Hogberg, G Nyberg, M Ottosson-Lofvenius and DJ Read. 2001. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789-792. https://doi.org/10.1038/35081058
  21. Jin L, CY Lu, Y Ye and GF Ye. 2013. Soil respiration in a subtropical mangrove wetland in the Jiulong River Estuary, China. Pedosphere 23:678-685. https://doi.org/10.1016/s1002-0160(13)60060-0
  22. Kilpelainen J, PJ Aphalo, A Barbero-Lopez, B Adamczyk, SA Nipu and T Lehto. 2020. Are arbuscular-mycorrhizal Alnus incana seedlings more resistant to drought than ectomycorrhizal and nonmycorrhizal ones? Tree Physiol. 40:782-795. https://doi.org/10.1093/treephys/tpaa035
  23. Lewis JD, XZ Wang, KL Griffin and DT Tissue. 2002. Effects of age and ontogeny on photosynthetic responses of a determinate annual plant to elevated CO2 concentrations. Plant Cell Environ. 25:359-368. https://doi.org/10.1046/j.0016-8025.2001.00815.x
  24. Lin G and L Sternberg. 1992. Differences in morphology, carbon isotope ratios, and photosynthesis between scrub and fringe mangroves in Florida, USA. Aquat. Bot. 42:303-313. https://doi.org/10.1016/0304-3770(92)90050-s
  25. Lin YS, BE Medlyn and DS Ellsworth. 2012. Temperature responses of leaf net photosynthesis: the role of component processes. Tree Physiol. 32:219-231. https://doi.org/10.1093/treephys/tpr141
  26. Lloyd J and JA Taylor. 1994. On the temperature dependence of soil respiration. Funct. Ecol. 8:315. https://doi.org/10.2307/2389824
  27. Lovelock CE. 2008. Soil respiration and belowground carbon allocation in mangrove forests. Ecosystems 11:342-354. https://doi.org/10.1007/s10021-008-9125-4
  28. Maseyk K, T Lin, A Cochavi, A Schwartz and D Yakir. 2019. Quantification of leaf-scale light energy allocation and photoprotection processes in a Mediterranean pine forest under extensive seasonal drought. Tree Physiol. 39:1767-1782. https://doi.org/10.1093/treephys/tpz079
  29. Matsui N, J Suekuni, M Nogami, S Havanond and P Salikul. 2010. Mangrove rehabilitation dynamics and soil organic carbon changes as a result of full hydraulic restoration and re-grading of a previously intensively managed shrimp pond. Wetl. Ecol. Manag. 18:233-242. https://doi.org/10.1007/s11273-009-9162-6
  30. Munjonji L, KK Ayisi, TP Mafeo, T Maphanga and KE Mabitsela. 2021. Seasonal variation in soil CO2 emission and leaf gas exchange of well-managed commercial Citrus sinensis (L.) orchards. Plant Soil 465:65-81. https://doi.org/10.1007/s11104-021-04986-x
  31. Naidoo G, AV Tuffers and DJ Willert. 2002. Changes in gas exchange and chlorophyll fluorescence characteristics of two mangroves and a mangrove associate in response to salinity in the natural environment. Trees 16:140-146. https://doi.org/10.1007/s00468-001-0134-6
  32. Nakanishi H. 1985. Geobotanical and ecological studies on three semi-mangrove plants in Japan. Jpn. J. Ecol. 35:85-92. https://doi.org/10.18960/seitai.35.1_85
  33. Nakanishi H. 2000. Distribution and ecology of the semi-mangrove, Hibiscus hamabo community in western Kyushu, Japan. Veg. Sci. 17:81-88. https://doi.org/10.15031/vegsci.17.81
  34. NIBR. 2018. An Overview of Endangered Wildlife. National Institute of Biological Resources. Incheon, Korea. pp. 562-563.
  35. Oh S, HC Kim, HS Kang, CH Shin and SC Koh. 2020. Seasonal change in the CO2 fixation rate and water-use efficiency of broad-leaved tree species on Jeju Island. J. Environ. Sci. Int. 29:123-132. https://doi.org/10.5322/jesi.2020.29.2.123
  36. R Core Team. 2023. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org. Accessed November 8, 2023.
  37. Shi PL, XZ Zhang, ZM Zhong and H Ouyang. 2006. Diurnal and seasonal variability of soil CO2 efflux in a cropland ecosystem on the Tibetan Plateau. Agric. For. Meteorol. 137:220-233. https://doi.org/10.1016/j.agrformet.2006.02.008
  38. Tang J, DD Baldocchi and L Xu. 2005. Tree photosynthesis modulates soil respiration on a diurnal time scale. Glob. Change Biol. 11:1298-1304. https://doi.org/10.1111/j.1365-2486.2005.00978.x
  39. Vargas R, DD Baldocchi, MF Allen, M Bahn, TA Black, SL Collins, JC Yuste, T Hirano, RS Jassal, J Pumpanen and J Tang. 2010. Looking deeper into the soil: biophysical controls and seasonal lags of soil CO2 production and efflux. Ecol. Appl. 20:1569-1582. https://doi.org/10.1890/09-0693.1
  40. Wickham H. 2011. ggplot2. Wiley Interdiscip. Rev.-Comput. Stat. 3:180-185. https://doi.org/10.1002/wics.147
  41. Yuste JC, IA Janssens, A Carrara, L Meiresonne and R Ceulemans. 2003. Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest. Tree Physiol. 23:1263-1270. https://doi.org/10.1093/treephys/23.18.1263