• Title/Summary/Keyword: 탄소배출 저감

Search Result 244, Processing Time 0.028 seconds

Predicting the success of CDM Registration for Hydropower Projects using Logistic Regression and CART (로그 회귀분석 및 CART를 활용한 수력사업의 CDM 승인여부 예측 모델에 관한 연구)

  • Park, Jong-Ho;Koo, Bonsang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.2
    • /
    • pp.65-76
    • /
    • 2015
  • The Clean Development Mechanism (CDM) is the multi-lateral 'cap and trade' system endorsed by the Kyoto Protocol. CDM allows developed (Annex I) countries to buy CER credits from New and Renewable (NE) projects of non-Annex countries, to meet their carbon reduction requirements. This in effect subsidizes and promotes NE projects in developing countries, ultimately reducing global greenhouse gases (GHG). To be registered as a CDM project, the project must prove 'additionality,' which depends on numerous factors including the adopted technology, baseline methodology, emission reductions, and the project's internal rate of return. This makes it difficult to determine ex ante a project's acceptance as a CDM approved project, and entails sunk costs and even project cancellation to its project stakeholders. Focusing on hydro power projects and employing UNFCCC public data, this research developed a prediction model using logistic regression and CART to determine the likelihood of approval as a CDM project. The AUC for the logistic regression and CART model was 0.7674 and 0.7231 respectively, which proves the model's prediction accuracy. More importantly, results indicate that the emission reduction amount, MW per hour, investment/Emission as crucial variables, whereas the baseline methodology and technology types were insignificant. This demonstrates that at least for hydro power projects, the specific technology is not as important as the amount of emission reductions and relatively small scale projects and investment to carbon reduction ratios.

Methane Mitigation Technology Using Methanotrophs: A Review (Methanotrophs을 이용한 메탄 저감 기술 최신 동향)

  • Cho, Kyung-Suk;Jung, Hyekyeng
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.3
    • /
    • pp.185-199
    • /
    • 2017
  • Methane, which is emitted from natural and anthropogenic sources, is a representative greenhouse gas for global warming. Methanotrophs are widespread in the environment and play an important role in the biological oxidation of methane via methane monooxygenases (MMOs), key enzymes for methane oxidation with broad substrate specificity. Methanotrophs have attracted attention as multifunctional bacteria with promising applications in biological methane mitigation technology and environmental bioremediation. In this review, we have summarized current knowledge regarding the biodiversity of methanotrophs, catalytic properties of MMOs, and high-cell density cultivation technology. In addition, we have reviewed the recent advances in biological methane mitigation technologies using methanotrophs in field-scale systems as well as in lab-scale bioreactors. We have also surveyed information on the dynamics of the methanotrophic community in biological systems and discussed the various challenges pertaining to methanotroph-related biotechnological innovation, such as identification of suitable methanotrophic strains with better and/or novel metabolic activity, development of high-cell density mass cultivation technology, and the microbial consortium (methanotrophs and non-methanotrophs consortium) design and control technology.

Enhanced Method for Environmental Benefit via Application of Low Impact Development (LID) Technique in Tram Design (트램 설계시 LID 기법 적용을 통한 환경편익 증대 방안)

  • Gu, Su-Hwan;Lee, Yunhee;Oa, Seong-Wook
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.826-832
    • /
    • 2016
  • Reduced greenhouse gas effect induced by LID (Low Impact Development) technique application in tramway construction was quantified to increase environmental benefit as part of an overall economic assessment. In addition, by application of penetration type permeable blocks, the effect of the urban water cycle was examined as a special assessment item in the policy analysis. The carbon emission ratios of the permeable turf block, according to the turf coverage rate (100%, 50% granite, and 50% HDPE), against the concrete track construction were -184.7%, -127.3%, and -116.3%, respectively. The carbon emission ratios of permeable blocks with granite and HDPE were 30.1% and 52.5%. In the case of the penetration type permeable block, it was possible to store rainfall in the block until 90mm/hr of rainfall intensity (94.3% of water reserve rate); therefore, this method was effective as part of the urban water cycle system. As a result, an increased environmental benefit from LID technique application is expected in tramway construction; this needs to be considered as a policy factor in AHP analysis.

Realization of Zero Waste Clean City to Low Carbon Green Growth (저탄소 녹색 성장을 위한 폐기물 제로 청정도시 구상)

  • Oh, Jeong-Ik;Ahn, Soo-Jeung;Kim, Jong-Yeob
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.131-140
    • /
    • 2010
  • Zero waste clean city was visualized by designing the environmental fundamental facilities such as automated waste collection and bio-energizing system of domestic waste, which was categorized into food and combustible waste from urban area. The biomass circulation position was applied to the domestic waste collection position combined with bio-energizing system in the zero waste clean city. Bio-energizing system consisted of bio-gasification, bio-fuel and bioenergy-circulation process. Food wastes were treated by bio-gasification with anaerobic digestion, and combustible wastes were made of bio-fuel with pyrolysis/drying. Biogas and bio-fuel was utilized into the electric generation or boiler heat in bioenergy-circulation process. The emission of carbon dioxide(CO2) and construction fee of the environmental fundamental facilities related with domestic waste was estimated in the existing city and zero waste clean city, assuming the amount of food waste 35 ton/day, combustible waste 20 ton/day from domestic area. Consequently, 2.7 times lower carbon dioxide emission and 15% construction fee of the environmental fundamental facilities related with domestic waste were obtained from the zero waste clean city by comparing with existing city.

Economic Analysis of Livestock Manure Solid Fuel Manufacturing and Power Generation Facility (가축분뇨 고체연료 제조 및 발전시설의 경제성 분석)

  • Kim, Chang-Gyu;Yoon, Young-Man
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.2
    • /
    • pp.29-42
    • /
    • 2022
  • The government promotes the 2050 carbon-neutral policy. Therefore, the concern to convert livestock manure into energy is increasing for the reduction of greenhouse gases generated in the livestock industry sector. In this study, the economic feasibility of the livestock manure solid fuel power generation facility, which is a major consumer of livestock manure solid fuel, was assessed to expand the demand for livestock manure solid fuel. The production cost of livestock manure solid fuel showed the lowest production cost of 97.4 thousand won/ton when dried using solid fuel at a 200 ton/day scale bio-drying facility. The livestock manure solid fuel power generation facility showed economic feasibility at a REC weight of 1.5 in the case of the bio-drying facility, so it was necessary to set a REC weight of 1.5 or more to expand the demand for livestock manure solid fuel. The conversion of livestock manure into solid fuel has various environmental benefits, such as the reduction of greenhouse gases and the effect of reducing non-point pollutants in the water system. Therefore, in order to expand livestock manure solid fuel production facility, it was required to review the feasibility including various environmental benefits.

Temperature Prediction and Control of Cement Preheater Using Alternative Fuels (대체연료를 사용하는 시멘트 예열실 온도 예측 제어)

  • Baasan-Ochir Baljinnyam;Yerim Lee;Boseon Yoo;Jaesik Choi
    • Resources Recycling
    • /
    • v.33 no.4
    • /
    • pp.3-14
    • /
    • 2024
  • The preheating and calcination processes in cement manufacturing, which are crucial for producing the cement intermediate product clinker, require a substantial quantity of fossil fuels to generate high-temperature thermal energy. However, owing to the ever-increasing severity of environmental pollution, considerable efforts are being made to reduce carbon emissions from fossil fuels in the cement industry. Several preliminary studies have focused on increasing the usage of alternative fuels like refuse-derived fuel (RDF). Alternative fuels offer several advantages, such as reduced carbon emissions, mitigated generation of nitrogen oxides, and incineration in preheaters and kilns instead of landfilling. However, owing to the diverse compositions of alternative fuels, estimating their calorific value is challenging. This makes it difficult to regulate the preheater stability, thereby limiting the usage of alternative fuels. Therefore, in this study, a model based on deep neural networks is developed to accurately predict the preheater temperature and propose optimal fuel input quantities using explainable artificial intelligence. Utilizing the proposed model in actual preheating process sites resulted in a 5% reduction in fossil fuel usage, 5%p increase in the substitution rate with alternative fuels, and 35% reduction in preheater temperature fluctuations.

An Experimental Study on Real Time CO Concentration Measurement of Combustion Gas in LPG/Air Flame Using TDLAS (TDLAS를 이용한 LPG/공기 화염 연소가스의 실시간 CO 농도 측정에 관한 연구)

  • So, Sunghyun;Park, Daegeun;Park, Jiyeon;Song, Aran;Jeong, Nakwon;Yoo, Miyeon;Hwang, Jungho;Lee, Changyeop
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.316-323
    • /
    • 2019
  • In order to enhance combustion efficiency and reduce atmosphere pollutants, it is essential to measure carbon monoxide (CO) concentration precisely in combustion exhaust. CO is the important gas species regarding pollutant emission and incomplete combustion because it can trade off with NOx and increase rapidly when incomplete combustion occurs. In the case of a steel annealing system, CO is generated intentionally to maintain the deoxidation atmosphere. However, it is difficult to measure the CO concentration in a combustion environment in real-time, because of unsteady combustion reactions and harsh environment. Tunable Diode Laser Absorption Spectroscopy (TDLAS), which is an optical measurement method, is highly attractive for measuring the concentration of certain gas species, temperature, velocity, and pressure in a combustion environment. TDLAS has several advantages such as sensitive, non-invasive, and fast response, and in-situ measurement capability. In this study, a combustion system is designed to control the equivalence ratio. Also, the combustion exhaust gases are produced in a Liquefied Petroleum Gas (LPG)/air flame. Measurement of CO concentration according to the change of equivalence ratio is confirmed through TDLAS method and compared with the simulation based on Voigt function. In order to measure the CO concentration without interference from other combustion products, a near-infrared laser at 4300.6 cm-1 was selected.

Greenhouse Gas Reduction from Paddy by Environmentally-Friendly Intermittent Irrigation: A Review (환경 친화적인 간단관개를 통한 논에서의 온실가스 저감)

  • Choi, Joongdae;Uphoff, Norman;Kim, Jonggun;Lee, Suin
    • Journal of Wetlands Research
    • /
    • v.21 no.1
    • /
    • pp.43-56
    • /
    • 2019
  • Irrigated and flooded rice paddy contributes to the greenhouse gas emissions (GHG) that affect climate. This in turn affects the supply and reliability of the water needed for rice production. This dynamic makes current rice production methods foreseeably less sustainable over time while having other undesirable effects. Intermittent irrigation by a means of the system of rice intensification (SRI) and alternate wetting and drying (AWD) methods was reviewed to reduce global warming potential (GWP) from 29% to 90% depending on site-specific characteristics from flooded rice paddy and analyzed to be a promising option for enhancing the productivity of water as well, an increasingly constraining resource. Additional benefits associated with the SRI/AWD can be less arsenic in the grain and less degradation of water quality in the run-off from rice paddies. Adoption and expansion of intermittent irrigation of SRI/AWD may require costly public and private investments in irrigation infrastructure that can precisely make irrigation control, and the involvement and upgrading of water management agencies and farmer organizations to enhance management capabilities. Private and public collaboration as a means of earning carbon credit under the clean-development mechanism (CDM) with SRI/AWD for industries to meet as a part of their GHG emission quota as well as a social contribution and publicity program could contribute to adopt intermittent irrigation and rural investment and development. Also, inclusion of SRI and AWD in programs designed under CDM and/or in official development assistance (ODA) projects could contribute to climate-change mitigation and help to achieve UN sustainable development goals (SDGs).

Life Cycle Assessment (LCA) of the Wind Turbine : A case study of Korea Yeongdeok Wind Farm (한국 영덕 풍력단지 사례 연구를 통한 풍력 발전의 환경 영향 평가)

  • Jun Heon Lee;Jun Hyung Ryu
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.142-154
    • /
    • 2023
  • As the importance of the environment has been recognized worldwide, the need to calculate and reduce carbon emissions has been drawing an increasing attention throughout various industrial sections. Thereby the discipline of LCA (Life Cycle Assessment) involving raw material preparation, production processes, transportation and installation has been established. There is a clear research gap between the need and the practice for Korean Case of renewable energy industry, particularly wind power. To bridge the gap, this study conducted LCA research on wind power generation in the Korean area of Yeongdeok, an example of a domestic onshor wind power complex using SimaPro, which is the most widely used LCA system. As a result of the study, the energy recovery period (EPT) of one wind turbine is about 10 months, and the GHG emitted to generate power of 1 kwh is 15 g CO2/kWh, which is competitive compared to other energy sources. In the environmental impact assessment by component, the results showed that the tower of wind turbines had the greatest impact on various environmental impact sectors. The experience gained in this study can be further used in strengthening the introduction of renewable energy and reducing the carbon emission in line with reducing climate change.

Effect of Limestone Fineness on Physical Properties and Environmental Impact of Cement (석회석의 분말도가 시멘트의 물리적 특성 및 환경에 미치는 영향)

  • In-Gyu Kang;Jin-Man Kim;Sang-Chul Shin;Geon-Woo Kim;Tae-Yun An
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.82-93
    • /
    • 2024
  • Since the cement industry generates more than 60 % of CO2 during the clinker production process, supplementary cementitious materials are used worldwide to reduce CO2 efficiently. Mainly used supplementary cementitious materials such as blast furnace slag and fly ash, which are used in various industries including the cement industry, concrete admixtures, and ground solidification materials. However, since their availability is expected to decrease in the future according to the carbon neutrality strategy of each industry, new supplementary cementitious materials should be used to achieve the cement industry's goal for increasing the additive content of Portland cement. Limestone is a material that already has a large amount in the cement industry and has the advantage of high grinding efficiency, so overseas developed countries established Portland limestone cement standards and succeeded in commercialization. This study was an experimental study conducted to evaluate the possibility of utilizing domestic PLC, the effect of fineness and replacement ratio on the physical properties of cement was investigated, and the environmental impact of cement was evaluated by analyzing CO2 emissions.