DOI QR코드

DOI QR Code

Life Cycle Assessment (LCA) of the Wind Turbine : A case study of Korea Yeongdeok Wind Farm

한국 영덕 풍력단지 사례 연구를 통한 풍력 발전의 환경 영향 평가

  • Jun Heon, Lee (Division of Creative Convergernce Engineering, Dongguk University, WISE Campus) ;
  • Jun Hyung, Ryu (Division of Creative Convergernce Engineering, Dongguk University, WISE Campus)
  • 이준헌 (동국대학교 WISE 캠퍼스 창의융합공학부) ;
  • 류준형 (동국대학교 WISE 캠퍼스 창의융합공학부)
  • Received : 2022.07.04
  • Accepted : 2022.07.22
  • Published : 2023.02.01

Abstract

As the importance of the environment has been recognized worldwide, the need to calculate and reduce carbon emissions has been drawing an increasing attention throughout various industrial sections. Thereby the discipline of LCA (Life Cycle Assessment) involving raw material preparation, production processes, transportation and installation has been established. There is a clear research gap between the need and the practice for Korean Case of renewable energy industry, particularly wind power. To bridge the gap, this study conducted LCA research on wind power generation in the Korean area of Yeongdeok, an example of a domestic onshor wind power complex using SimaPro, which is the most widely used LCA system. As a result of the study, the energy recovery period (EPT) of one wind turbine is about 10 months, and the GHG emitted to generate power of 1 kwh is 15 g CO2/kWh, which is competitive compared to other energy sources. In the environmental impact assessment by component, the results showed that the tower of wind turbines had the greatest impact on various environmental impact sectors. The experience gained in this study can be further used in strengthening the introduction of renewable energy and reducing the carbon emission in line with reducing climate change.

전세계적으로 환경의 중요성이 부각되면서, 원재료 준비, 생산 공정, 운송 및 설치 등 산업 전체 기간에 걸친 기후 변화 주요 물질인 탄소 배출량을 계산하고, 저감해야 한다는 필요성이 강조되고 있다. 이를 전과정평가(Life Cycle Assessment, LCA)라 정의되면서 전세계적으로 다양한 산업들에 시도되고 있다. 국내에도 일부 관련 시도들이 있었지만, 국내 재생에너지 산업에 대해서는 거의 발표되지 않았다. 이러한 연구 중요성에도 불구하고, 부진한 관련 연구의 격차를 메꾸기 위해 본 연구는 국내 육상 풍력발전 단지의 한 사례인 경북 영덕 발전에 대하여 LCA 연구를 관련 시스템 중 가장 많이 사용되는 SimaPro를 이용하여 수행하였다. 연구 결과 풍력 터빈 1대의 에너지 회수기간(EPT)는 약 10개월이며, 1 kwh의 전력을 생산하는데 배출되는 온실가스 배출량(Green House Gas, GHG,)는 15 g CO2/kWh로 다른 에너지원과 비교해서 경쟁력 있음을 보였다. 부품 별 환경 영향 평가에서는 풍력 터빈의 타워가 여러 환경 영향 부문에 영향이 가장 크다는 결과를 보였다. 본 연구에서 얻어진 경험은 향후 신재생 에너지 보급 및 확대 정책의 강화와 대중의 인식 제고에 도움이 될 것이라고 사료된다.

Keywords

Acknowledgement

이 논문은 2020년도 한국연구재단의 기초연구사업(No. 2020R1-I1A3A04038008)의 지원을 받았음. 류준형은 2020년 동국대학교 DG선진연구강화사업에서 일부 지원을 받았음.

References

  1. https://www.ipcc.ch/.
  2. Agreement, P., "Paris Agreement," Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change, 4, 2017(2015).
  3. http://energyatlas.iea.org/#!/tellmap/1378539487.
  4. Council, G. W. E., "GWEC Global Wind Report 2021," Glob. Wind Energy Counc(2021).
  5. Pacala, S. and Socolow, R., "Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies," Science, 305, 968-972(2004). https://doi.org/10.1126/science.1100103
  6. Nazir, M. S., Mahdi, A. J., Bilal, M., Sohail, H. M., Ali, N. and Iqbal, H. M. N., "Environmental Impact and Pollution-related Challenges of Renewable Wind Energy Paradigm - A Review," Sci. Total Environ., 683, 436-444(2019). https://doi.org/10.1016/j.scitotenv.2019.05.274
  7. Saidur, R., Rahim, N. A., Islam, M. R. and Solangi, K. H., "Environmental Impact of Wind Energy," Renew Sustain Energy Rev., 15, 2423-2430(2011). https://doi.org/10.1016/j.rser.2011.02.024
  8. Dhar, A., Naeth, M. A., Jennings, P. D. and El-Din, M. G., "Perspectives on Environmental Impacts and a Land Reclamation Strategy for Solar and Wind Energy Systems," Sci. Total Environ., 718, 134602(2020).
  9. Sebestyen, V., "Renewable and Sustainable Energy Reviews: Environmental Impact Networks of Renewable Energy Power Plants," Renew Sustain Energy Rev., 151, 111626(2021).
  10. Kumar, Y., Ringenberg, J., Depuru, S. S., Devabhaktuni, V. K., Lee, J. W., Nikolaidis, E., Andersen, B. and Afjeh, A., "Wind Energy: Trends and Enabling Technologies," Renew Sustain Energy Rev., 53, 209-224(2016). https://doi.org/10.1016/j.rser.2015.07.200
  11. Guangul, F. M. and Chala, G. T., "SWOT Analysis of Wind Energy as a Promising Conventional Fuels Substitute," 4th MEC International Conference on Big Data and Smart City (ICBDSC), 1-6(2019).
  12. Silva, D. A. L., Nunes, A. O., Moris, V. A. S., Piekarski, C. M. and Rodrigues, T. O., "How Important Is the LCA Software Tool You Choose Comparative Results from GaBi, openLCA, SimaPro and Umberto," VII Conferencia Internacional de anaLisis de Ciclo de Vida En Latinoamerica(2017).
  13. Chang, R. D., Zuo, J., Zhao, Z. Y., Zillante, G., Gan, X. L. and Soebarto, V., "Evolving Theories of Sustainability and Firms: History, Future Directions and Implications for Renewable Energy Research," Renew. Sustain. Energy Rev., 72, 48-56(2017). https://doi.org/10.1016/j.rser.2017.01.029
  14. Waas, T., Huge, J., Block, T., Wright, T., Benitez-Capistros, F. and Verbruggen, A., "Sustainability Assessment and Indicators: Tools in a Decision-making Strategy for Sustainable Development," Sustainability, 6, 5512-5534(2014). https://doi.org/10.3390/su6095512
  15. ISO, ISO 14044. "Environmental Management - Life Cycle Assessment - Requirements and Guidelines," British Standards Institution(2006).
  16. ISO, ISO 14040. "Environmental Management - Life Cycle Assessment - Principles and Framework," British Standards Institution(2006).
  17. Bhat, I. K. and Prakash, R., "LCA of Renewable Energy for Electricity Generation Systems-a Reviewm," Renew Sustain Energy Rev., 13, 1067-1073(2009). https://doi.org/10.1016/j.rser.2008.08.004
  18. Hwang, H., Mun, J. and Kim, J., "Economic Benefits of Integration of Supplementary Biopower and Energy Storage Systems in a Solar-Wind Hybrid System," Korean Chemical Engineering Research, 58(3), 381-389(2020). https://doi.org/10.9713/KCER.2020.58.3.381
  19. Kim, K. and Kim, J., "The Optimal Design and Economic Evaluation of a Stand-Alone RES Energy System for Residential, Agricultural and Commercial Sectors," Korean Chemical Engineering Research, 54(4), 470-478(2016). https://doi.org/10.9713/kcer.2016.54.4.470
  20. Strantzali, E. and Aravossis, K., "Decision Making in Renewable Energy Investments: a Review," Renew. Sustain. Energy Rev, 55, 885-898(2016). https://doi.org/10.1016/j.rser.2015.11.021
  21. Martinez, E., Sanz, F., Pellegrini, S., Jimenez, E. and Blaco, J., "Life-cycle Assessment of a 2-MW Rated Power Wind Turbine: CML Method," Int. J. Life Cycle Assess, 14, 52-63(2009).
  22. Varun, Bhat, I. K. and Prakash, R., "LCA of Renewable Energy for Electricity Generation Systems-a Review," Renew. Sustain. Energy Rev., 13, 1067-1073(2009). https://doi.org/10.1016/j.rser.2008.08.004
  23. Oebels, K. B. and Pacca, S., "Life Cycle Assessment of An Onshore Wind Farm Located at the Northeastern Coast of Brazil," Renew. Energy, 53, 60-70(2013). https://doi.org/10.1016/j.renene.2012.10.026
  24. Awan, A. B. and Khan, Z. A., "Recent Progress in Renewable Energy-Remedy of Energy Crisis in Pakistan," Renew. Sustain. Energy Rev., 33, 236-253(2014). https://doi.org/10.1016/j.rser.2014.01.089
  25. Raadal, H. L., Vold, B. I., Myhr, A., Jonkman, J. M., Robertson, A. N. and Nygaard, T. A., "GHG Emissions and Energy Performance of Offshore Wind Power," Renew. Energy, 66, 314-324(2014). https://doi.org/10.1016/j.renene.2013.11.075
  26. Bonou, A., Laurent, A. and Olsen, S. I., "Life Cycle Assessment of Onshore and Offshore Wind Energy-From Theory to Application," Appl. Energy, 180, 327-337(2016). https://doi.org/10.1016/j.apenergy.2016.07.058
  27. Martinez, E., Latorre-Biel, J. I., Jimenez, E., Sanz, F. and Blanco, J., "Life Cycle Assessment of a Wind Farm Repowering Process," Renew. Sustain. Energy Rev., 93, 260-271(2018). https://doi.org/10.1016/j.rser.2018.05.044
  28. Gkantou, M., Rebelo, C. and Baniotopoulos, C., "Life Cycle Assessment of Tall Onshore Hybrid Steel Wind Turbine Towers," Energies, 13, 3950(2020). https://doi.org/10.3390/en13153850
  29. Pollini, B. and Rognoli, V., "Early-Stage Material Selection Based on Life Cycle Approach: Tools, Obstacles and Opportunities for Design," Sustain. Prod. Consum., 28, 1130-1139(2021). https://doi.org/10.1016/j.spc.2021.07.014
  30. Tremeac, B. and Meunier, F., "Life Cycle Analysis of 4.5 MW and 250 W Wind Turbines," Renew. Sustain. Energy Rev., 13, 2104-2110(2009). https://doi.org/10.1016/j.rser.2009.01.001
  31. MartInez, E., Sanz, F., Pellegrini, S., Jimenez, E. and Blanco, J., "Life Cycle Assessment of a Multi-Megawatt Wind Turbine," Renew. Energy, 34, 667-673(2009). https://doi.org/10.1016/j.renene.2008.05.020
  32. Vargas, A. V., Zenon, E., Oswald, U., Islas, J. M., Guereca, L. P. and Manzini, F. L., "Life Cycle Assessment: a Case Study of Two Wind Turbines Used in Mexico," Appl. Therm. Eng., 75, 1210-1216(2015). https://doi.org/10.1016/j.applthermaleng.2014.10.056
  33. Uddin, M. S. and Kumar, S., "Energy, Emissions and Environmental Impact Analysis of Wind Turbine Using Life Cycle Assessment Technique," J. Cleaner Prod., 69, 153-164(2014). https://doi.org/10.1016/j.jclepro.2014.01.073
  34. Huang, Y. F., Gan, X. J. and Chiueh, P. T., "Life Cycle Assessment and Net Energy Analysis of Offshore Wind Power Systems," Renew. Energy, 102, 98-106(2017). https://doi.org/10.1016/j.renene.2016.10.050
  35. Alsaleh, A. and Sattler, M., "Comprehensive Life Cycle Assessment of Large Wind Turbines in the US," Clean Technol. Environ. Policy, 21, 887-903(2019). https://doi.org/10.1007/s10098-019-01678-0
  36. Stavridou, N., Koltsakis, E. and Baniotopoulos, C. C., "A Comparative Life-cycle Analysis of Tall Onshore Steel Wind-turbine Towers," Clean Energy, 4, 48-57(2019). https://doi.org/10.1093/ce/zkz028
  37. Nagle, A. J., Delaney, E. L., Bank, L. C. and Leahy, P. G., "A Comparative Life Cycle Assessment between landfilling and Co-Processing of Waste from decommissioned Irish Wind Turbine Blades," J. Cleaner Prod., 277, 123321(2020).
  38. Upadhyayula, V. K. K., Gadhamshetty, V., Athanassiadis, Tysklind, D., M., Meng, F., Pan, Q., Cullen, J. M. and Yacout, D. M. M., "Wind Turbine Blades Using Recycled Carbon Fibers: An Environmental Assessment," Environ. Sci. Technol., 56, 1267-1277 (2022). https://doi.org/10.1021/acs.est.1c05462
  39. Chipindula, J., Botlaguduru, V. S. V., Du, H., Kommalapati, R. R. and Huque, Z., "Life Cycle Environmental Impact of Onshore and Offshore Wind Farms in Texas," Sustainability, 10, 2022(2018).
  40. https://www.epa.gov/.
  41. Choi, B. H., Park, S. U. and Lee, D. K., "Environmental Effect Analysis for PV System Using LCA," New & Renewable Energy, 3, 11-16(2007).
  42. Reinert, C., Deutz, S., Minten, H., Dorpinghaus, L., von Pfingsten, S., Baumgartner, N. and Bardow, A., "Environmental Impacts of the Future German Energy System from Integrated Energy Systems Optimization and Dynamic Life Cycle Assessment," Comput. Chem. Eng., 153, 107406(2021).
  43. De Camillis, C., Brandao, M., Zamagni, A. and Pennington, D. W., "Sustainability Assessment of Future-oriented Scenarios: a Review of Data Modelling Approaches in Life Cycle Assessment," Towards Recommendations for Policy Making and Business Strategies (2013).
  44. Ekvall, T., Azapagic, A., Finnveden, G., Rydberg, T., Weidema, B. P. and Zamagni, A., "Attributional and Consequential LCA in the ILCD Handbook," Int. J. Life Cycle Assess., 21, 293-296(2016). https://doi.org/10.1007/s11367-015-1026-0
  45. Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A. and Zelm, R. V., "ReCiPe2016: a Harmonised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level," Int. J. Life Cycle Assess., 22, 138-147(2017). https://doi.org/10.1007/s11367-016-1246-y
  46. Amponsah, N. Y., Troldborg, M., Kington, B., Aalders, I. and Hough, R. L., "Greenhouse Gas Emissions from Renewable Energy Sources: a Review of Lifecycle Considerations," Renew Sustain Energy Rev, 39, 461-475(2014). https://doi.org/10.1016/j.rser.2014.07.087