• Title/Summary/Keyword: 탄소나노용액

Search Result 104, Processing Time 0.025 seconds

Characteristics of Electrospun Poly(methyl methacrylate) Nanofibers Embedding Multi-Walled Carbon Nanotubes(MWNTs) (다중벽 탄소 나노튜브가 분산된 Poly(methyl methacrylate) 고분자 용액의 전기방사연구)

  • Kim Dong Ouk;Lee Dai-Hoi;Yoon Seong-sik;Lee Sun-Ae;Nam Jae Do
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.90-94
    • /
    • 2006
  • An electrospinning process was used to fabricate poly(methyl methacrylate) (PMMA) nanofibers embedding multi-walled carbon nanotubes(MWNTs). SEM images showed that the nanofiber surface and structural morphology depended on solvent types (dimethyl formamide, chlor-form and toluene) and carbon nanotube contents (0.5 and $3.0\;wt\%$). Nano-fiber alignments could be controlled by adjusting the electrodes configuration at collector sites. Relationship between carbon nanotube and PMMA nanofiber was studied with radius of gyration of polymer chain and carbon nanotube sizes. As the carbon nanotube content ratio increased, the number of bead increased.

Electrospun nanofibers and their potent applications (전하유도방사에 의한 나노섬유와 그들의 응용)

  • 조성무
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.1-4
    • /
    • 2001
  • 1990년대 들어 여러 첨단 산업분야에서 나노기술의 급격한 부각과 함께 섬유분야에도 나노섬유기술에 대한 많은 관심이 모아지고 있다. 현재까지 나노섬유는 고분자용액 또는 용융체의 전하유도방사(electrospinning)에 의한 수 ~ 수백 nm의 electro-spun 나노섬유, 블록 공중합체 각 성분의 상분리 현상을 이용하여 형성된 나노섬유, 나노크기의 내경을 지닌 나노반응기에서 고분자의 중합과 동시에 배향되어 얻어지는 나노섬유, 또한, 서로 사용성이 없고 탄화정도가 크게 다른 두 고분자의 복합섬유를 제조하고 이를 탄화시켜 얻는 탄소나노섬유 yarn 등이 있다. (중략)

  • PDF

Preparation and Oil Absorption Properties of PAN Based 3D Shaped Carbon Nanofiber Sponge (폴리아크릴로니트릴 기반 3D 탄소나노섬유 스펀지의 제조 및 오일 흡착 특성)

  • Hye-Won Ju;Jin-Hyeok Kang;Jong-Ho Park;Jae-Kyoung Ko;Yun-Su Kuk;Changwoo Nam;Byoung-Suhk Kim
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.217-223
    • /
    • 2023
  • In this work, the preparation and its oil adsorption behavior of polyacrylonitrile-based carbon nanofiber sponge were investigated. The prepared carbon sponges showed excellent selective oil adsorption in the mixture of water and oil, and the adsorption capacity of reused carbon nanofiber sponge was also investigated. Further, carbon nanofiber sponge adsorbent with internally structured channel showed fast oil adsorption behavior due to a capillary phenomenon. After use, sponge adsorbent was heat-treated at 800℃ under N2 and studied the possibility of a sensor for electrochemical detection of 4-aminophenol.

Electrical and Optical Properties of Carbon Nanotube Networks Formed on Glass Substrate by Dip-Coating Method (담지 방법을 통해 유리 기판 위에 형성된 탄소나노튜브 네트워크의 전기적 및 광학적 특성)

  • Jang, Eui-Yun;Kang, Tae-June;Im, Hyung-Wook;Kim, Dae-Weon;Kim, Yong-Hyup
    • Composites Research
    • /
    • v.21 no.1
    • /
    • pp.8-15
    • /
    • 2008
  • Single-walled carbon nanotube networks(SWNT-networks) were uniformly formed on a glass substrate by the dip-coating method. The changes of electrical and optical properties of SWNT-networks were investigated with respect to processing variables including number of dip, concentration of SWNT-colloidal solution, withdrawal velocity. Consequently, the sheet resistance and transmittance of the SWNTs-networks were sensitively controlled by the processing variables. The networks have highly uniform sheet resistance and optically excellent transmittance within the range of visible ray.

Effect of Surface Treatment on the Dispersion of NWNT/PP Composite (MWNT/Polypropylene 복합재료의 분산성에 관한 연구)

  • Kim, Ju-Hong;Kim, Dong-Hak
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.11a
    • /
    • pp.427-429
    • /
    • 2008
  • 본 연구에서는 CNT표면에 공유결합으로 기능성기를 도입하는 화학적 방법을 사용하여 PP/MWNT 복합재를 제조하였으며, 기능성기가 도입된 CNT를 용액-용융 블랜딩 방법을 이용하여 탄소나노튜브를 분산시켰다. 탄소나노튜브 표면에 기능성기를 도입한 경우가 상대적으로 분산도가 양호하였다.

  • PDF

The Properties of Cement Paste Mixed with Carbon Nanotubes Dispersion Solution (탄소나노튜브 분산용액을 혼입한 시멘트 페이스트의 특성 변화)

  • Park, Sung-Hwan;Kim, Ji-Hyun;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.201-202
    • /
    • 2021
  • Currently, the domestic construction industry is trying to expand the range of building materials due to overload of growth. In particular, several studies are being conducted to make up for the weakness of building materials by solving problems such as reduction of tensile strength and brittle behavior of concrete. Among them, efforts to maximize the use of carbon nanotubes (CNT) that has excellent mechanical and electrical conductivity properties are continuing. However, CNT is hydrophobic and have a strong Van der Waals force between particles, making it difficult to obtain an effective dispersion state. Therefore, in this study, various kinds of surfactants like DOC (Sodium Deoxycholate), PVP (Polyvinylpyrrolidone), and PCE (Polycarboxylate ester) were added to improve the dispersibility of CNT, and analyzed the changes in the properties of the cement paste mixed with them.

  • PDF

Preparation and characterization of water-soluble polyaniline/carbon nanotube composites (수용성 폴리아닐린/탄소나노튜브 복합재료의 제조 및 물성분석)

  • Lee, Jea-Uk;Jo, Won-Ho;Lee, Won-Oh;Byun, Joon-Hyung
    • Composites Research
    • /
    • v.24 no.6
    • /
    • pp.1-6
    • /
    • 2011
  • A new water-soluble and self-doped poly(styrenesulfonic acid-graft-aniline), PSSA-g-PANI, for dispersing carbon nanotubes (CNTs) in water was synthesized and its ability to stabilize aqueous CNT dispersions was examined. It was observed that the PANI in PSSA-g-PANI, which has benzoid and quinoid structure, was strongly adsorbed onto the nanotube surface via a strong ${\pi}-{\pi}$ interaction, and thus only gentle sonication causes exfoliation of CNT ropes to small bundles and the long-term stability of their resulting dispersions was much better than commercial surfactants. Furthermore, when thin films of PSSA-g-PANI/CNT are prepared from aqueous dispersion and their electrical conductivities are measured by the four probe technique, it is observed that their conductivities are in the range of 1.5-2.5 S/cm.

Influences to Additive Type on Carbon Nanotube metal composite (첨가제 종류에 따른 탄소나노튜브 금속복합재료 소결코팅 영향)

  • Kim, Dea-Hea;Zheng, XI-Ru;Kim, Myin-Su;Park, Chan-Woo
    • Composites Research
    • /
    • v.25 no.5
    • /
    • pp.159-163
    • /
    • 2012
  • The coating of metal surface with carbon nanotubes(CNTs) has been studied for the heat transfer enhancement of the boiling and condensation of refrigerant. The multiwalled carbon nanotube/copper oxide(CuO) composite powder, which has been surface modified by dispersant and polyvinyl alcohol solution, was ultrasonically sprayed and sintered on a copper wafer. In this paper, experiments were performed to assess the characterization and comparison of the carbon nanotube before and after sinterning and the morphology changes of the CNT/CuO-coated surface by using different dispersants. The dispersants used are THF (Tetrahydrofuran), SDBS(Dodecylbenzenesulfonic acid sodium salt), SDS(Sodium dodecy sulfate). The samples were examined by scanning electron microscopy(SEM), thermogravimetric analysis(TGA), differential scanning calorimeter(DSC) and Raman spectroscopy.

Pressure Sensitive Device Using Conductive and Porous Structures (전도성 다공성 구조 압력감지소자)

  • So, Hye-Mi;Park, Cheolmin;Chang, Won Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.601-605
    • /
    • 2014
  • Porous conductors are known to demonstrate excellent electrical, mechanical, and chemical resistance. These porous conductors demonstrated potential applications in various fields such as electrodes for supercapacitors, flexible heaters, catalytic electrodes, and sorbents. In this study, we described a pressure sensitive device using conductive and porous sponges. With an extremely simple "dipping and drying" process using a single-walled carbon nanotube (SWCNT) solution, we produced conductive sponges with sheet resistance of < $30k{\Omega}/sq$. These carbon nanotube sponges can be deformed into any shape elastically and repeatedly compressed to large strains without collapse. The pressure sensors developed from these sponges demonstrated high resistance change under pressure of up to a half of their initial resistance.