DOI QR코드

DOI QR Code

Pressure Sensitive Device Using Conductive and Porous Structures

전도성 다공성 구조 압력감지소자

  • So, Hye-Mi (Convergence Mechanical Systems Research Division, Korea Institute of Machinery & Materials) ;
  • Park, Cheolmin (Dept. of Nano-Mechatronics, University of Science and Technology) ;
  • Chang, Won Seok (Convergence Mechanical Systems Research Division, Korea Institute of Machinery & Materials)
  • 소혜미 (한국기계연구원 나노융합기계연구본부 나노역학연구실) ;
  • 박철민 (과학기술연합대학원대학교 나노메카트로닉스전공) ;
  • 장원석 (한국기계연구원 나노융합기계연구본부 나노역학연구실)
  • Received : 2014.03.18
  • Accepted : 2014.05.06
  • Published : 2014.07.01

Abstract

Porous conductors are known to demonstrate excellent electrical, mechanical, and chemical resistance. These porous conductors demonstrated potential applications in various fields such as electrodes for supercapacitors, flexible heaters, catalytic electrodes, and sorbents. In this study, we described a pressure sensitive device using conductive and porous sponges. With an extremely simple "dipping and drying" process using a single-walled carbon nanotube (SWCNT) solution, we produced conductive sponges with sheet resistance of < $30k{\Omega}/sq$. These carbon nanotube sponges can be deformed into any shape elastically and repeatedly compressed to large strains without collapse. The pressure sensors developed from these sponges demonstrated high resistance change under pressure of up to a half of their initial resistance.

일반적으로 표면적/부피비가 큰 전도성 다공체는 수퍼캐패시터의 전극이나 흡수제, 유연히터 등의 다양한 분야에 적용되어 왔다. 본 논문에서는 이러한 전도성 다공성 구조의 역학적 전기적 특성을 이용하여 고감도 압력센서를 구현하였다. 탄소나노튜브 용액에 스펀지를 적셔 다공체에 전도성을 부여하였으며, 압력에 따른 전도성 다공체의 저항 변화를 측정하였다. 전도성 스펀지에 압력이 가해졌을때, 각각의 탄소나노튜브들은 서로 맞붙게 되어 저항이 최대 20%까지 줄어듦을 확인하였다. 부드럽고 탄성력이 뛰어난 탄소나노튜브 스폰지는 반복적인 압축실험에도 모양의 변형 없이 매우 빠르게 안정화되고 일정한 저항변화를 확인할 수 있었다. 또한 스펀지 압력소자를 유연소자에 적용하기 위하여 탄소나노튜브 트랜지스터와 연결하여 외부압력에 따른 전기적 특성변화를 측정하였다.

Keywords

References

  1. Ko, W. H., Wang, Q., 1999, "Touch Mode Capacitive Pressure Sensors," Sens. Actuat. A Vol. 75, pp. 242-251. https://doi.org/10.1016/S0924-4247(99)00069-2
  2. Makihata, M., Tanaka, S., Muroyama, M., Matsuzaki, S., Yamada, H., Nakayama, T., Yamaguchi, U., Mima, K., Nonomura, Y., Fujiyoshi, M. and Esashi M., 2012, "Integration and Packaging Technology of MEMS-on-CMOS Capacitive Tactile Sensor for Robot Application Using Thick BCB Isolation Layer and Backside-Grooved Electrical Connection," Sens. Actuat. A Vol. 188, pp. 103-110. https://doi.org/10.1016/j.sna.2012.04.032
  3. Kim, K., Lee, K. R., Kim, W. H., Park, K.-B., Kim, T.-H. , Kim, J.-S. and Pak, J. J., 2009, "Polymer-Based Flexible Tactile Sensor up to 32${\times}$32 Arrays Integrated with Interconnection Terminals," Sens. Actuat. A Vol. 156, pp. 284-291. https://doi.org/10.1016/j.sna.2009.08.015
  4. Schwartz, G., Tee, B. C.-K., Mei, J., Appleton, A. L., Kim, D. H., Wang, H. and Bao, Z., 2013, "Flexible Polymer Transistors with High Pressure Sensitivity for Application in Electronic Skin and Health Monitoring," Nature Commun. 4:1859 doi:10.1038/ncomms2832.
  5. Someya, T., Kato, Y., Sekitani, T., Iba, S., Noguchi, Y., Murase, Y., Kawaguchi, H. and Sakurai, T., 2005, "Conformable, Flexible, Large-Area Networks of Pressure and Thermal Sensors with Organic Transistor Active Matrixes," Proc. Natl. Acad. Sci. U.S.A. Vol. 102, pp. 12321-12325. https://doi.org/10.1073/pnas.0502392102
  6. Takei, K., Takahashi, T., Ho, J. C., Ko, H., Gillies, A. G., Leu, P., Fearing, R. S. and Javey, A., 2010, "Nanowire Active-Matrix Circuitry for Low-Voltage Macroscale Artificial Skin," Nature Mater. Vol. 9, pp. 821-826. https://doi.org/10.1038/nmat2835
  7. Pushparaj, V. L., Shaijumon, M. M., Kumar, A., Murugesan, S., Ci, L. J., Vajtai, R., Linhardt, R. J., Nalamasu, O. and Ajayan, P. M., 2007, "Flexible Energy Storage Devices Based on Nanocomposite Paper," Proc. Natl. Acad. Sci. U.S.A. Vol. 104, pp. 13574-13577. https://doi.org/10.1073/pnas.0706508104
  8. Yun, S., Jang, S. D., Yun, G. Y., Kim, J. H. and Kim, J., 2009, "Paper Transistor Made with Covalently Bonded Multiwalled Carbon Nanotube and Cellulose," Appl. Phys. Lett. Vol. 95, pp. 104102-104102-3. https://doi.org/10.1063/1.3224200
  9. Sekitani, T., Yokota, T., Zschieschang, U., Klauk, H., Bauer, S., Takeuchi, K., Takamiya, M., Sakurai, T., Someya1, T., 2009, "Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays," Science Vol. 326, pp. 1516-1519. https://doi.org/10.1126/science.1179963