DOI QR코드

DOI QR Code

Influences to Additive Type on Carbon Nanotube metal composite

첨가제 종류에 따른 탄소나노튜브 금속복합재료 소결코팅 영향

  • 김대해 (전북대학교 기계설계공학부 대학원) ;
  • 정희여 (전북대학교 기계설계공학부 대학원) ;
  • 김민수 (전북대학교 기계설계공학부) ;
  • 박찬우 (전북대학교 기계설계공학부)
  • Received : 2012.07.30
  • Accepted : 2012.10.28
  • Published : 2012.10.31

Abstract

The coating of metal surface with carbon nanotubes(CNTs) has been studied for the heat transfer enhancement of the boiling and condensation of refrigerant. The multiwalled carbon nanotube/copper oxide(CuO) composite powder, which has been surface modified by dispersant and polyvinyl alcohol solution, was ultrasonically sprayed and sintered on a copper wafer. In this paper, experiments were performed to assess the characterization and comparison of the carbon nanotube before and after sinterning and the morphology changes of the CNT/CuO-coated surface by using different dispersants. The dispersants used are THF (Tetrahydrofuran), SDBS(Dodecylbenzenesulfonic acid sodium salt), SDS(Sodium dodecy sulfate). The samples were examined by scanning electron microscopy(SEM), thermogravimetric analysis(TGA), differential scanning calorimeter(DSC) and Raman spectroscopy.

냉매의 비등이나 응축같은 열전달 향상을 위하여 금속 표면위에 탄소나노튜브(CNT)를 코팅하는 것을 연구하였다. 분산제와 PVA(polyvinyl alcohol) 용액으로 분산 처리된 다중벽 탄소나노튜브/CuO의 복합 분말 코팅액을 구리기판위에 도포한 후 소결을 하였다. 본 논문에서는 CNT/CuO 소결 코팅시 다양한 분산제를 사용하여 소결 전후의 조직 형상 변화 및 특징을 실험적으로 평가하였다. 분산제로는 THF(Tetrahydrofuran), SDBS(Dodecylbenzenesulfonic acid sodium salt), SDS(Sodium dodecy sulfate)가 사용되었다. 각각의 시편들은 주사전자현미경, 열중량분석, 시차주사열량측정법, 라만분광법을 사용하여 분석하였다.

Keywords

References

  1. Zhang, X.F., Zhang, X.B., Tendeloo, G.V., Amelinckx, S., Beeck, M., and Landuyt, J.V., "Carbon nano-tubes; their formation process and observation by electron microscopy," Journal of Crystal Growth, Vol. 130, No. 3-4, 1993,pp. 368-382. https://doi.org/10.1016/0022-0248(93)90522-X
  2. Pipes, R.B., and Hubert, P., "Helical carbon nanotube arraye: mechanical properties," Composites Science and Technology, Vol. 62, No. 3, 2002, pp.419-428. https://doi.org/10.1016/S0266-3538(02)00002-7
  3. Delmotee, J.S., and Rubio, A., "Mechanical properties of carbon nanotubes: a fiber digest for beginners," Carbon, Vol. 40, No. 10, 2002, pp. 1729-1734. https://doi.org/10.1016/S0008-6223(02)00012-X
  4. Kweon, H.S., Estili, M., Takagi, K., Miyazaki, T., and Kawasaki, A., "Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites," Carbon, Vol. 47, No. 3, 2009, pp. 570-577. https://doi.org/10.1016/j.carbon.2008.10.041
  5. Kim, P., Shi, L., Majumdar, A., and McEuen, P.L., "Thermal Transport Measurements of Individual Multiwalled Nanotubes," Physical Review Letters, Vol. 87, No. 21, 2001, pp.1-4. https://doi.org/10.1103/PhysRevLett.87.1
  6. Ujereh, S., Fisher, T., and Mudawar, I., "Effects on carbon nanotube arrays on nucleate pool boiling," International Journal of Heat and Mass Transfer, Vol. 50, No. 19-20, 2007, pp. 4023-4038. https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.030
  7. Khanikar, V., Mudawar, I., and Fisher, T., "Effects of carbon nanotube coating on flow boiling in a micro-channel," International Journal of Heat and Mass Transfer, Vol. 52, No. 15-16, 2009, pp.3805-3817. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.007
  8. Kwon, S.H., Park, D.Y., and Lee, D.Y., "A Study on the Microstructure and Physical Properties of Cold Sprayed Cu/CNT Composite Coating," Journal of Korean Institute of Metals and Materials, Vol. 46, No. 3, 2008, pp. 182-188.
  9. Kim. M.S., Fabrication of Transparent Conductive Films from Single-Walled Carbon Nanotubes Dispersed in Aqueous Solutions with Various Surfactants and Characterization of Their Properties, Mater Thesis, Sejong University, Korea, 2010.