• Title/Summary/Keyword: 탄성전자

Search Result 326, Processing Time 0.027 seconds

Magnetic anomaly in the southern part of the Yellow Sea (서해남부해역의 지자기 이상대 해석)

  • Kim, Sung-Bae;Choi, Sung-Ho;Suh, Man-Cheol
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.85-92
    • /
    • 2008
  • National Oceanographic Research Institute is carrying out an oceanographic survey for the entire sea areas around Korean Peninsula annually starting with the East Sea from 1996 by establishing a national oceanographic basic map survey plan for the sea areas under the jurisdiction of Korea, so this paper used the oceanographic geomagnetism data measured at the southern area of the Yellow Sea using 'Hae Yang 2000' in 1999, aiming at clarifying the cause of geomagnetic abnormality zone during the course of treating and analyzing the geomagnetic data. For treatment of magnetic data, we obtained electromagnetic force values and geomagnetic abnormality values around the investigated sea area through a process of searching and removal of bad data, correction of sensor positions, correction of magnetic field effects around the hull, correction of diurnal variation, normal correction, correction of cross point errors, etc. The electromagnetic force distribution around the investigated sea area was $49000\;{\sim}\;51600\;nT$, which is judged to be within the normal electromagnetic force intensity distribution range around the Yellow Sea. The isodynamic lines are distributed in Northeast-Southwest direction, and electromagnetic force values are increasing toward the northwest. The result of comparing the magnetic abnormality around the sea area among $124^{\circ}$ 49' 48" E, $35^{\circ}$ 10' 48" N $\sim$ $125^{\circ}$ 7' 48" E, and $35^{\circ}$ 33' 00" N sections with the elastic wave cross section and the result of modeling coincide well with the underground geological structure clarified from the existing elastic wave survey cross section. Therefore, it is judged that the distribution of magnetic force abnormality generally shows the effect pursuant to the distribution of the sedimentary basins in the Tertiary period and the bedrocks in the Cretaceous period which are well developed in the bottom of the sea.

  • PDF

Effect of Material Property Uncertainty on Warpage during Fan Out Wafer-Level Packaging Process (팬아웃 웨이퍼 레벨 패키지 공정 중 재료 물성의 불확실성이 휨 현상에 미치는 영향)

  • Kim, Geumtaek;Kang, Gihoon;Kwon, Daeil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.1
    • /
    • pp.29-33
    • /
    • 2019
  • With shrinking form factor and improving performance of electronic packages, high input/output (I/O) density is considered as an important factor. Fan out wafer-level packaging (FO-WLP) has been paid great attention as an alternative. However, FO-WLP is vulnerable to warpage during its manufacturing process. Minimizing warpage is essential for controlling production yield, and in turn, package reliability. While many studies investigated the effect of process and design parameters on warpage using finite element analysis, they did not take uncertainty into consideration. As parameters, including material properties, chip positions, have uncertainty from the point of manufacturing view, the uncertainty should be considered to reduce the gap between the results from the field and the finite element analysis. This paper focuses on the effect of uncertainty of Young's modulus of chip on fan-out wafer level packaging warpage using finite element analysis. It is assumed that Young's modulus of each chip follows the normal distribution. Simulation results show that the uncertainty of Young's modulus affects the maximum von Mises stress. As a result, it is necessary to control the uncertainty of Young's modulus of silicon chip since the maximum von Mises stress is a parameter related to the package reliability.

Effects of Emulsifier Additions on the Physical Properties of Extruded Psyllium (유화제 첨가에 따른 차전자피 압출성형물의 물리적 특성)

  • Lee, Jung Won;Ryu, Gi Hyung
    • Food Engineering Progress
    • /
    • v.23 no.2
    • /
    • pp.118-124
    • /
    • 2019
  • This study aims to investigate the physical properties of extruded psyllium husk upon the addition of emulsifiers. Three different emulsifiers-glycerol monostearate (GMS), polyglycerol ester (PGE), and sugar ester (SE)-were added to the mixture of psyllium husk and rice powder before extrusion. Extrusion was performed using a twin-screw extruder at 140℃ die temperature, 200 rpm screw speed, and 16% feed moisture content. The physical properties of psyllium husk extrudates including expansion ratio, specific length, piece density, texture profile, color properties, water soluble index, and water absorption index were evaluated. It was observed that the expansion ratio was the highest while the specific length and piece density were the lowest in the control which had no emulsifiers. Texture profile analysis showed that the apparent elastic modulus and breaking strength were highest in the extrudate with a PGE of 0.1%. The adhesiveness was found to be lowest in the extrudates with an SE of 0.1% and GMS of 0.5%. Lightness value was highest in the extrudate with a PGE of 0.1%. Color difference, water soluble index, and water absorption index were highest in the control. The results reveal that some physical properties of extruded psyllium husk were improved with the addition of emulsifiers. This finding provides useful information for the development of psyllium snacks with good physical characteristics.

Comparison of Light Output from NE213 for Electrons and Protons

  • Shin, Hyun-Kook;Koh, Byung-Joon
    • Nuclear Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.111-117
    • /
    • 1979
  • The light output of the NE213 liquid scintillator to electrons and protons was measured by coincidence spectrometer which employs the time of flight technique. The proton energies (3.2Mev, 4Mev, 5Mev, 6Mev) represent the kinetic energies of recoil protons from elastic scattering of a polyenergetic neutron source Am-Be (about 2-9 Mev) at angle of 45$^{\circ}$ and 60$^{\circ}$. The response of the NE213 liquid scintillator to protons was varied nonolinearly as the energy increased. while the response to electrons was varied linearly. The light intensity produced by electrons was relatively larger than that of protons in the rate of about three times when the same energy was introduced. The results of the light output to protons were similar to those of Batchelor et al.

  • PDF

A study on the Mechanical Properties of Concrete using Electronic Waste as Fine Aggregate (전자폐기물을 잔골재로 적용한 콘크리트의 역학적 특성에 관한 연구)

  • Kim, Yong-Moo;Choi, So-Yeong;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.90-97
    • /
    • 2018
  • The quantities of electronic waste have been increased rapidly, and was caused variety problems such as environmental pollution or dissipation of resource. So, it needed to development of recycling technology about heavy metal in the electronic waste. Meanwhile, filler material (concrete or mortar) was used for shielding radioactive waste, however, it did not used materials that it is proved radiation shielding performance. So, there is a lack of confidence in the shielding performance. Therefore, in this paper, mechanical properties of concrete was evaluated for the applicability using electronic waste as fine aggregate of filler material. From the test results, compressive and flexural strength and elasticity modulus and the micro pore in the $1{\mu}m$ range was significantly affected by substitution of electronic waste, however, it could be improved the performance by using mineral admixture as binder. So, it is shown that the electronic waste could be applicable as fine aggregate of filler material.

Theoretical Analysis of Bragg-Reflector Type FBAR with Resonance Mode (공진 모드에 따른 Bragg-Reflector Type FBAR 의 이론적 분석)

  • 조문기;윤영섭
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.11
    • /
    • pp.9-18
    • /
    • 2003
  • Two configurations of Film Bulk Acoustic Wave Resonators with acoustic quater-wave bragg reflector layers are theoretically analyzed using equivalent circuits and the difference of their characteristics are discussed. We compare the characteristics of λ/2 mode to those of ideal FBAR with top and bottom electrode contacting air and the characteristics of λ/4 mode to those of ideal FBAR with top electrode contacting air and bottom electrode clamped. We assume that the piezoelectric film is ZnO, the electrode is A1 and the substrate is Si, ABCD parameters are extracted and input impedance is calculated by converting the equivalent circuit from Mason equivalent circuits to the simplified equivalent circuits that ABCD parameters are extracted possible, From the variation of resonance frequency due to the change of thickness of reflector layers and the variation of electrical Q due to the change of mechanical Q of reflector layers, it is confirmed that the reflector layer just under the bottom electrode have the greatest effect on the varation of resonance frequency and electrical Q. It is shown that the number of reflector layers required for the saturation of electrical Q decreases with the increase of the impedance ratio of reflector layers and electrical Q of λ/2 mode is larger than that of λ/4 mode, Electromechanical coupling factor is independent of the number of layers, The impedance ratio of reflector layers becomes larger as the electromechanical coupling factor becomes larger, The electromechanical coupling factor of the two mode are smaller than those of ideal FBARs because of the trapping of acoustic energy in the reflector layers, The insertion loss of the ladder filter decreases with the increase of the number of reflector layers but the bandwidth is not affected much by the number of reflector layers, As the impedance ratio of reflector layers becomes larger the insertion loss becomes smaller and the bandwidth becomes wider, In our analysis of the two mode, characteristics of λ/2 mode appear to be slightly more favorable than that of λ/4 mode

Core-hole Effect on Partial Electronic Density of State and O K-edge x-ray Raman Scattering Spectra of High-Pressure SiO2 Phases (전자-정공 효과(Core-Hole Effect) 적용에 따른 SiO2 고압상들의 전자구조 및 O K-edge X-선 Raman 산란 스펙트럼 계산 결과 분석)

  • Khim, Hoon;Yi, Yoo Soo;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.59-70
    • /
    • 2017
  • $SiO_2$ is one of the most abundant constituents of the Earth's crust and mantle. Probing its electronic structures at high pressures is essential to understand their elastic and thermodynamic properties in the Earth's interior. The in situ high-pressure x-ray Raman scattering (XRS) experiment has been effective in providing detailed bonding transitions of the low-z materials under extreme compression. However, the relationship between the local atomic structures and XRS features at high pressure has not been fully established. The ab initio calculations have been used to overcome such experimental difficulties. Here we report the partial density of states (PDOS) of O atoms and the O K-edge XRS spectra of ${\alpha}-quartz$, ${\alpha}-cristobalite$, and $CaCl_2$-type $SiO_2$ phases calculated using ab initio calculations based on the full-potential linearized augmented plane wave (FP-LAPW) method. The unoccupied O PDOSs of the $CaCl_2$-type $SiO_2$ calculated with and without applying the core-hole effects present significantly distinctive features. The unoccupied O p states of the ${\alpha}-quartz$, ${\alpha}-cristobalite$ and $CaCl_2$-type $SiO_2$ calculated with considering the core-hole effect present similar features to their calculated O K-edge XRS spectra. This confirms that characteristic features in the O K-edge XRS stem from the electronic transition from 1s to unoccupied 2p states. The current results indicate that the core-hole effects should be taken in to consideration to calculate the precise O K-edge XRS features of the $SiO_2$ polymorphs at high pressure. Furthermore, we also calculated O K-edge XRS spectrum for $CaCl_2$-type $SiO_2$ at ~63 GPa. As the experimental spectra for these high pressure phases are not currently available, the current results for the $CaCl_2$-type $SiO_2$ provide useful prospect to predict in situ high-pressure XRS spectra.

An Electro-magnetic Air Spring for Vibration Control in Semiconductor Manufacturing (반도체 생산에서 진동 제어를 위한 전자기 에어 스프링)

  • Kim, Hyung-Tae;Kim, Cheol-Ho;Lee, Kang-Won;Lee, Gyu-Seop;Son, Sung-Wan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1128-1138
    • /
    • 2010
  • One of the typical problems in the precise vibration is resonance characteristics at low frequency disturbance due to a heavy mass. An electro-magnetic(EM) air spring is a kind of vibration control unit and active isolator. The EM air spring in this study aims at removing the low frequency resonance for semiconductor manufacturing. The mechanical and electronic parts in the active isolator are designed to operate under a weight of 2.5 tons. The EM spring is floated using air pressure in a pneumatic elastic chamber and actuated by EM levitation force. The actuator consists of a EM coil and a permanent magnetic plate which are installed inside of the chamber. An air mount was constructed for the experiment with a stone surface plate, 4 active air springs, 4 gap sensors, a DSP controller, and a multi-channel power amp. A PD control method and operating logic was applied to the DSP. Simulation using 1/4 model was carried out and compared with the experiments. The time duration and maximum peak at resonance frequency can be reduced sharply by the proposed system. The results show that the active system can avoid the resonance caused by the natural frequency of the passive system.

A case study of verifying a suicide by carbon monoxide intoxication committed by burning an ignition charcoal briquette (착화탄 연소에 의한 일산화탄소 중독사에서 자살입증에 관한 사례연구)

  • Sung, Tae-myung;Jo, Ju-ik;Ahn, Phil-sang
    • Analytical Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.398-408
    • /
    • 2015
  • Carbon monoxide (CO) intoxication, arising from CO from an ignited charcoal briquette (ICB), is a popular means of committing suicide in Korea. Most CO intoxications are related to suicide attempts; however, the possibility of a homicide disguised as a suicide cannot be ruled out. Therefore, forensic investigation of the deceased and the crime scene is crucial to confirm that the deceased committed suicide. Detection of the components of an ICB on the objects suspected of being contacted by the deceased, such as the hands, nostrils, and doorknobs, is essential for linking the crime scene to the victim in the case of suicides by ignited ICBs. The traces from an ICB were analyzed by investigating the morphological characteristics and obtaining elemental compositions. The ICBs were completely different from blackened wood, as detected by discriminant analysis with the elements of carbon and oxygen. We analyzed one case of CO intoxication to demonstrate an excellent procedure for verifying whether a suicide occurred with an ICB. We employed SEM-EDX for the analysis of an ICB, microscope-FT/IR and pyrolysis-GC/MS for a partly burnt resin-type substance, GC/MS for diphenhydramine (a sleeping drug), and GC/TCD for the CO-Hb level. We detected traces of an ICB on the hands, nostrils, and doorknobs, which were all discriminated into an ICB group. Detection of ICB traces from the nostrils could indicate that the deceased started the fire themselves to commit suicide. The partially burnt black material was analyzed as an acrylronitrilestyrene polymer, which is normally used to make bags for carrying or wrapping and could be assumed to have been used to transport the ICB. Diphenhydramine, a sleeping drug, was detected at a level of 2.3 mg/L in the blood, which was lower than that in fatal cases (8-31 mg/L; mean 16 mg/L). A CO-Hb level of 79% was found in the blood, which means that the cause of death was CO intoxication. The steps shown here could represent an ideal method for reaching a verdict of suicide by CO intoxication produced by burning an ICB in a sealed room or a car.

3D modeling of a surface acoustic wave for wireless sensors (무선 센서용 표면탄성파의 3 차원 모델링)

  • Cuong, Tran Ngoc;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.111-111
    • /
    • 2009
  • In this work, we discuss simulation of surface acoustic wave device using Comsol Multiphysics. The structure SAW device based on piezoelectric thin film aluminum-nitride (AlN) on silicon was simulated. Some parameters of SAW device such as surface velocity, displacement of piezoelectric thin film were evaluated by software. Many modes and shapes of wave are also discussed in this paper. For evaluation physical parameters of AlN piezoelectric layer, the SAW resonator was modeled and simulation results were also compared with experiment results. we simulated arid evaluated the surface Rayleigh wave of AlN thin film on silicon substrate. Results simulation and experiment showed the surface velocity of AlN thin film was about 5200 m/s and shape of surface wave was also displayed. This paper has also proposed as method to study SAW characteristic of piezoelectric thin film and found out measurement values accurately of film such as stiffness matrix, piezoelectric matrix. These values are very important in calculation and design SAW device or MEMS device based on AlN piezoelectric layer.

  • PDF