DOI QR코드

DOI QR Code

A study on the Mechanical Properties of Concrete using Electronic Waste as Fine Aggregate

전자폐기물을 잔골재로 적용한 콘크리트의 역학적 특성에 관한 연구

  • 김용무 (강릉원주대학교 토목공학과) ;
  • 최소영 (강릉원주대학교 토목공학과) ;
  • 김일순 (강릉원주대학교 토목공학과) ;
  • 양은익 (강릉원주대학교 토목공학과)
  • Received : 2017.11.13
  • Accepted : 2018.02.22
  • Published : 2018.03.01

Abstract

The quantities of electronic waste have been increased rapidly, and was caused variety problems such as environmental pollution or dissipation of resource. So, it needed to development of recycling technology about heavy metal in the electronic waste. Meanwhile, filler material (concrete or mortar) was used for shielding radioactive waste, however, it did not used materials that it is proved radiation shielding performance. So, there is a lack of confidence in the shielding performance. Therefore, in this paper, mechanical properties of concrete was evaluated for the applicability using electronic waste as fine aggregate of filler material. From the test results, compressive and flexural strength and elasticity modulus and the micro pore in the $1{\mu}m$ range was significantly affected by substitution of electronic waste, however, it could be improved the performance by using mineral admixture as binder. So, it is shown that the electronic waste could be applicable as fine aggregate of filler material.

전자폐기물의 발생량이 급증하고 있고, 전자폐기물로 인한 환경오염 혹은 자원낭비등과 같은 문제를 야기하고 있다. 따라서 전자 폐기물 안에 포함된 중금속을 재활용할 수 있는 기술 개발이 필요하다. 한편, 채움재(콘크리트 혹은 모르타르)는 방사성폐기물의 차폐를 위해 사용되나, 방사성 차폐 성능을 확보한 재료를 적용하고 있지 않다. 따라서 채움재는 차폐성능에 관한 신뢰가 부족한 상황이다. 그러므로 본 연구에서는, 전자폐기물을 채움재의 잔골재로 적용하기 위하여 콘크리트의 역학적 특성을 평가하였다. 실험결과, 압축강도, 휨강도, 탄성계수 및 $1{\mu}m$ 영역의 공극이 상당히 영향을 받는 것으로 나타났으나, 광물질 혼화재를 결합재로 사용하면 성능이 개선되었다. 따라서 전자폐기물은 채움재의 잔골재로써 적용이 가능할 것으로 판단된다.

Keywords

References

  1. ACI 363-92 (1992), Report on High-Strength Concrete, American Concrete Institute.
  2. British Standard Institution (2004), Euro code 2: Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings, BSI.
  3. CEB_FIP Code (2010), CEB-FIP Model Code, Design Code, Comite Euro International du Beton, Lausanne.
  4. Chang, D. I., Son, Y. H., Cho, K. H., and Kim, K. L. (2000), Evaluation of Stress-Strain Relationship and Elastic Modulus Equation of Steel Fiber Reinforced High-Strength Concrete, Journal of the Korea Concrete Institute, 12(2), 13-20. https://doi.org/10.22636/JKCI.2000.12.2.13
  5. Choi, S. Y., Choi, Y. S., and Yang, E. I. (2017), Effects of Heavy Weight Waste Glass Recycled as Fine Aggregate on the Mechanical Properties of Mortar Specimens, Annals of Nuclear Energy, 99, 372-382. https://doi.org/10.1016/j.anucene.2016.09.035
  6. Choi, S. Y., Choi, Y. S., Won, M. S., and Yang, E. I. (2015), Evaluation on the Applicability of Heavy Weight Waste Glass as Fine Aggregate of Shielding Concrete, Journal of the Korea Institute for Structural Maintenance and Inspection, 19(4), 101-108 (in Korean). https://doi.org/10.11112/jksmi.2015.19.4.101
  7. Hognestad, H. E. (1951), A Study of Combined Bending and Axial Load in Reinforced Concrete Members, University of illinois experiment station, Urbana, 49(22).
  8. Japan Society of Civil Engineers (2007), Standard Specifications for Concrete Structures.
  9. Kang, S. T., and Ryu, G. S. (2011), The Effect of Steel-Fiber Contents on the Compressive Stress-Strain Relation of Ultra High Performance Cementitious Composites (UHPCC) Journal of the Korea Concrete Institute, 23(1), 67-75 (in Korean). https://doi.org/10.4334/JKCI.2011.23.1.067
  10. Korea Concrete Institute (2012), Concrete Structure Design Code and Commentary, Korea Concrete Institute, Seoul.
  11. Korea Energy Economics institute (2017), Yearbook of Energy Statics, 1-77.
  12. Mehta, P. K. and Monteiro, P. J. M. (2014), Concrete Structures, Properties and Materials, 4th Edition, Prentice-Hall, Inc., Englewood cliffs, New Jersey, 86-88.
  13. Paolo Gemma (2012), Overview of ITU Activities on e-Waste.
  14. Widmer, R., Oswald-Krapf, H., Sinha-Khetriwal, D., Schnellmann, M., and Boni, H. (2005). Global Perspectives on E-waste. Environmental Impact Assessment Review, 25(5 SPEC. ISS.), 436-458. https://doi.org/10.1016/j.eiar.2005.04.001

Cited by

  1. Comparison of Drying Shrinkage of Concrete Specimens Recycled Heavyweight Waste Glass and Steel Slag as Aggregate vol.13, pp.22, 2020, https://doi.org/10.3390/ma13225084