• Title/Summary/Keyword: 탄성모르타르

Search Result 33, Processing Time 0.022 seconds

Pullout capacity Evaluation of anchor and anchor system development to prevent release of anchors in expansion joint (신축이음장치의 앵커 인발성능 평가 및 나사 풀림 방지를 위한 앵커시스템 개발)

  • Ha, Sang-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.1
    • /
    • pp.65-72
    • /
    • 2010
  • The failure of expansion joints for bridges generally occurs in non-shrinkage mortar another problem is the release of anchors in expansion joints due to the impact and vibration that occurs when cars are driving over a bridge. In this study, to overcome the failure of expansion joints that is related to the failure of non-shrinkage mortar, an elastomeric mortar has been developed. The elastomeric mortar has a highly developed pull-out capacity compared with that of non-shrinkage mortar. Moreover, an anchor system that can be changed easily and prevent the fracture of expansion joints has been developed.

Experimental Study on Evaluating Early-age Strength and Stiffness Characteristics of Controlled Low Strength Material (유동성 채움재의 조기 강도 및 강성 특성 평가를 위한 실험적 연구)

  • Son, Dong Geon;Jeong, In Up;Kim, Dong-Ju;Byun, Yong-Hoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.133-140
    • /
    • 2021
  • There are few attempts to estimate the strength and stiffness of controlled low strength material (CLSM) using existing field-testing methods. The objective of this study is to evaluate the resilient modulus of CLSM by using the Light Weight Deflectometer (LWD) and investigate the relationships between the resilient modulus from LWD and the unconfined compressive strength (UCS) and secant modulus of elasticity from unconfined compressive test. Five CLSMs with different mix designs are used to evaluate the flowability and the stiffening of the CLSM in the flow and Vicat needle tests, respectively. To evaluate the early strength and stiffness characteristics, unconfined compressive tests are performed using the CLSM specimens cured for 1 and 7 days. LWD tests are carried out to estimate the resilient modulus of the CLSM specimens. The experimental results show that for the curing time of 1 day, the UCS and secant modulus of elasticity generally increase with the fast setting mortar content (FC). The CLSM specimen with the highest FC shows the significant increase in the UCS and secant modulus of elasticity along the curing time. Overall, the resilient modulus for the curing time of 1 day increases with the FC, while that for the curing time of 7days decreases with an increase in the FC. From the results, the linear relationships between the resilient modulus and UCS and secant modulus of elasticity are established.

Anchor system in order not to Unscrew of Expansion Joint for Bridge (신축이음장치에서 나사 풀림을 방지하기 위한 앵커시스템)

  • Ha, Sang-Su;Choi, Dong-Uk;Lee, Chin-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.793-796
    • /
    • 2008
  • The failure of expansion joint for bridge is generally occurred on the non-shrinkage mortar and other problem is the release of anchors in expansion joint due to the impact and vibration during the driven car on the bridge. In this study, to overcome the failure of expansion joint by the failure of non-shrinkage, the elastomeric mortar is developed. The pull-out capacity developed elastomeric mortar compared with that of non-shrinkage mortar. Moreover the anchor system which can be change easily and prevent a fracture of expansion joint is developed.

  • PDF

Evaluation of Setting Delay in Mortar Adding Superplasticizer Using Electrical Resistivity Measurement (전기비저항 측정법을 이용한 유동화 모르타르의 응결 지연 현상 평가)

  • Lee, Hanju;Yim, Hong Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.9-15
    • /
    • 2018
  • According to the development and use of self-consolidating concrete in field, interest in material properties of early-age concrete is rising. Setting time with hydration process of cement is one of significant indicator to evaluate the early-age material properties of concrete, various nondestructive methods including penetration resistance measurement have been proposed to estimate setting time. This study performed an experimental approach to evaluate setting time delay in mortar adding superplasticizer using electrical resistivity measurement. For this purpose, total nine types of mortar samples were prepared, and its electrical resistivity was monitoring during 24h after mixing. From the experimental result, rising time of electrical resistivity was used to evaluate setting delay of mortar, and penetration resistance was also measured for comparison. In addition, dynamic elastic modulus and compressive strength of 1day mortar were measured to investigate a possibility the use of electrical resistivity measurement for evaluation of early-age material properties.

Experimental study on pullout capacity on friction type steel pipe rock bolt to use elastic restoring force and existing rock bolts (탄성복원력을 이용한 마찰형 강관 록볼트 및 기존 록볼트에 대한 인발력 실험연구)

  • Moorak Son;Jihyun Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.459-468
    • /
    • 2023
  • In this study, an experiment on pullout capacity was conducted of rock bolts using grouting materials such as cement mortar and resin, which are widely used, and a newly proposed steel pipe friction type rock bolt using elastic restoring force, and the results were compared and analyzed. The experimental results showed that the pullout capacity on the rock bolts with cement mortar under a dry condition (no ground water) was relatively larger than the rock bolts with resin and the steel pipe. Nevertheless, the friction type steel pipe rock bolt to use elastic restoring force is expected to be useful in the field particularly where groundwater exists and it affects the loss and curing of grouting materials such as cement mortar or resin. In addition, it was found to have the advantage of being easy and quick to install.

The Effect of the Replacement of Grinded Fly Ash according to Curing Temperature on Repair Mortar Based on Polymer Admixture (폴리머수지 기반 보수모르타르에서 양생온도에 따른 미분쇄된 플라이애시 치환율의 영향)

  • Sim, Jae-Il;Mun, Ju-Hyun;Yun, In-Gu;Jeon, Young-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.116-124
    • /
    • 2015
  • The objective of this study is to evaluate the effects of the replacement levels of grinded fly-ash on the repaired mortar based on a polymer. The main parameters are the curing temperature and replacement levels of grinded fly-ash. The curing temperature and the replacement levels of grinded fly-ash are varied at $40^{\circ}C$, $20^{\circ}C$ and $5^{\circ}C$, and between 0% and 35% of the total binder by weight, respectively. The flow in fresh mortar and compressive strengths according to ages, the relationship of stress-strain, elastic modulus and modulus rupture in hardened mortar, as well as scanning the electron microscopy and the X-ray diffraction of mortar, were measured, respectively. The test results showed that the flow, elastic modulus and modulus rupture are great in mortar specimens with 20~30% of the replacement levels of grinded fly-ash. In addition, compressive strengths according to ages were affected by the replacement levels of grinded fly-ash and the curing temperature indicated that the strength development ratio of mortar with 20% of the replacement levels of grinded fly-ash was greater than others. In the prediction of the compressive strength specified by the ACI 209 code, the strength development at an early and late age can be generalized by the functions of the replacement levels of grinded fly-ash and the curing temperature. In the analysis of scanning the electron microscopy and the X-ray diffraction, the number and intensity of peaks increased and the form of CSH gels on the surface of the particle of grinded fly-ash was observed.

A Study on Mechanical Characteristics of Masonry Structure Constructed by Clay Brick with Lime Mortar (점토벽돌과 석회모르타르를 사용한 조적구조의 역학적 특성에 관한 연구)

  • Yu, Hye Ran;Kwon, Ki Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.87-98
    • /
    • 2011
  • Clay bricks with lime mortar are recently popular since they are eco- and environment-friendly construction material being capable of air flow and moisture movement. However, there is little study on those of clay brick an lime mortar while relatively many researches on the structural characteristics of concrete bricks with cement mortar are available in Korea. Furthermore, the current Korean Building Code of masonry structures was established on the base of the Foreign Codes which does not reflect Korean masonry construction circumstance, such as material characteristics and section properties. To overcome these problems, experiments of masonry structures constructed using clay bricks with lime mortar were carried out to evaluate their structural characteristics such as, prism compressive strength, adhesive strength and diagonal tensile(shear) strength. Also this research compares the mechanical characteristics between clay bricks with lime mortar and concrete bricks with cement mortar to provide information that will be used for revisions of the domestic standards for masonry structures. As masonry structures constructed with clay bricks and lime mortar show different aspects over the ones constructed with concrete bricks and cement mortar, we suggest estimation equation of prism compressive strength and diagonal tensile strength on masonry structures constructed with clay bricks and lime mortar.

Experimental Study on Tension-Hardening and Softening Characteristics in Reinforced Mortar with CSA Expansion Agent (CSA 팽창재를 혼입한 철근보강 모르타르의 인장 경화-연화 특성에 관한 실험적 연구)

  • Choi, Se-Jin;Ahn, Jung-Kil;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.101-110
    • /
    • 2014
  • Expansion agent is a very effective admixture for prevention of cracking due to autogenous/drying shrinkage and this can induce internal chemical prestress to embedded reinforcement. In this paper, tension-softening and hardening in cement mortar with steel and CSA expansion agent are experimentally evaluated. Cement mortar with steel reinforcement is prepared and tensile strength test is performed for evaluation of cracking and tensile behavior. In spite of slightly reduced strength and elasticity in CSA mortar, significantly increased tension-hardening behavior is evaluated in CSA mortar with induced chemical prestress. Furthermore previous tension softening models are compared with the test results and improvement are proposed.

Effects of supplementary cementitious materials on drying shrinkage of cement mortar - a comparative study (혼화재에 따른 모르타르 건조수축-비교 연구)

  • Choi, Hoon Jae;Cui, Chengkui;Park, Chung-Hoon;Kim, Baek-Joong;Yi, Chongku;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.158-159
    • /
    • 2013
  • In this study, effects of supplementary cementitious materials(fly ash, blast furnace slag and waste glass) on drying shrinkage of cement mortar were compared and evaluated. The results showed drying shrinkage of cement mortar using blast furnace slag and waste glass is larger than shrinkage due to capillary pressure, while using fly ash is smaller.

  • PDF