DOI QR코드

DOI QR Code

Evaluation of Setting Delay in Mortar Adding Superplasticizer Using Electrical Resistivity Measurement

전기비저항 측정법을 이용한 유동화 모르타르의 응결 지연 현상 평가

  • 이한주 (경북대학교 건설방재공학부) ;
  • 임홍재 (경북대학교 건설방재공학부)
  • Received : 2018.06.08
  • Accepted : 2018.10.18
  • Published : 2018.11.01

Abstract

According to the development and use of self-consolidating concrete in field, interest in material properties of early-age concrete is rising. Setting time with hydration process of cement is one of significant indicator to evaluate the early-age material properties of concrete, various nondestructive methods including penetration resistance measurement have been proposed to estimate setting time. This study performed an experimental approach to evaluate setting time delay in mortar adding superplasticizer using electrical resistivity measurement. For this purpose, total nine types of mortar samples were prepared, and its electrical resistivity was monitoring during 24h after mixing. From the experimental result, rising time of electrical resistivity was used to evaluate setting delay of mortar, and penetration resistance was also measured for comparison. In addition, dynamic elastic modulus and compressive strength of 1day mortar were measured to investigate a possibility the use of electrical resistivity measurement for evaluation of early-age material properties.

고유동 콘크리트의 사용이 일반화 되면서 유동화제 사용에 따른 콘크리트의 초기 재료물성 발현에 대한 관심이 높아지고 있다. 콘크리트 수화반응에 따른 응결시점은 초기 물성 발현을 나타낼 수 있는 지표 중 하나이며, 이러한 응결시점 평가를 위해 관입저항시험과 함께 다양한 비파괴 평가 기법들이 사용되고 있다. 본 연구에서는 전기비저항 측정법을 이용하여 유동화 모르타르의 응결 지연 현상 평가에 관한 실험연구를 수행하였다. PC계 유동화제 첨가량에 따른 총 9종류의 모르타르 샘플을 준비하였으며, 4-전극법을 이용한 초기재령 모르타르 샘플의 전기비저항 변화를 24h 측정하였다. 측정결과로부터 결정된 전기비저항 상승시기를 모르타르 응결시점 평가를 위한 전기적 변수로 사용하였으며, 측정결과의 비교 분석을 위해 동일 샘플의 관입저항시험을 실시하였다. 또한 유동화 모르타르의 1일 동 탄성계수 및 압축강도 측정을 통해 전기비저항 측정을 이용한 유동화 모르타르의 초기 재료물성 평가 가능성을 확인하였다.

Keywords

References

  1. Kim, D. W., Oh, S. H., and Lee, K. M.. (2013), Influence of superplasticizers on fluidity and compressive strength of alkali activated slag motar, Journal of the Korean Recycled Construction Resources Institute, 6(4), 485-486.
  2. Chandra, S., and Bjornstrom, J. (2002), Influence of cement and superplasticizers type and dosage on the fluidity of cement mortars-Part I, Cement and Concrete Research, Elsevier, 32(10), 1605-1611. https://doi.org/10.1016/S0008-8846(02)00839-6
  3. Ryu, H. G., (2009), Analysis of concrete characteristic depending on chemical admixture changing component content ratio, Journal of the Korean Institute of Building Construction, 9(2), 85-91.
  4. Termkhajornkit, P., and Nawa, T. (2004), The fluidity of fly ash-cement paste containing naphthalene sulfonate superplasticizer, Cement and concrete research, Elsevier, 34(6), 1017-1024. https://doi.org/10.1016/j.cemconres.2003.11.017
  5. Nakajima, Y., and Yamada, K. (2004), The effect of the kind of calcium sulfate in cements on the dispersing ability of poly ${\beta}$-naphthalene sulfonate condensate superplasticizer, Cement and concrete research, Elsevier, 34(5), 839-844. https://doi.org/10.1016/j.cemconres.2003.09.022
  6. Shin, J. Y., Kim, J. Y., Hong, J. S., Suh, J. K., and Lee, Y. S. (2005), Effect of various superplasticizers on the hydration of cement paste. Journal of the Koran concrete institute, 17(6), 1019-1024. https://doi.org/10.4334/JKCI.2005.17.6.1019
  7. Chae, E. J., Shin, J. Y., Suh, J. K., Lee, J. M., and Park. J. W. (2006), Effect of PC(Polycarboxylate) type superplasticizer on the hydration reaction of cement paste, Journal of the Korea Concrete Institute, 18(4), 569-576. https://doi.org/10.4334/JKCI.2006.18.4.569
  8. Ryu, H. S., and Song, J. T.. (2004). Effects of polycarboxylate type superplasticizer on the hydration of ordinary portland cement, Journal of the Korean Ceramic Society, 41(5), 417-424. https://doi.org/10.4191/KCERS.2004.41.5.417
  9. Sato, T., & Ruch, R. (1980). Stabilization of colloidal dispersions by polymer adsorption. Dekker.
  10. Shui, L., Sun, Z., Yang, H., Yang, X., Ji, Y., and Luo, Q. (2016), Experimental evidence for a possible dispersion mechanism of polycarboxylate-type superplasticisers, Advances in Cement Research, ICE, 28(5), 287-297. https://doi.org/10.1680/jadcr.15.00070
  11. Uchikawa, H., Hanehara, S., and Sawaki, D. (1997), The role of steric repulsive force in the dispersion of cement particles in fresh paste prepared with organic admixture, Cement and Concrete Research, Elsevier, 27(1), 37-50. https://doi.org/10.1016/S0008-8846(96)00207-4
  12. Yoshioka, K., Sakai, E., Daimon, M., and Kitahara, A. (1997), Role of steric hindrance in the performance of superplasticizers for concrete. Journal of the American Ceramic Society, Wiley Online Library, 80(10), 2667-2671. https://doi.org/10.1111/j.1151-2916.1997.tb03169.x
  13. Chung, C. W., Suraneni, P., Popovice, J. S., and Struble, L. J., (2012), Setting Time Measurement Using Ultrasonic Wave Flection, ACI Materials of Concrete Journal, 109(1), 109-118.
  14. Pinto, R. C. A. and Hover, K. C., (1999), Application of Maturity Approach to Setting Times, Materials Journal, 96(6), 686-691.
  15. Hamann, C. H., Hamnett, A., and Vielstich, W., (1998), Electrochemistry, Wiley-VCH, USA, 2-31.
  16. Lee, H. J., and Yim, H. J.. (2017). Setting time evaluation of concrete using electrical resistivity measurement, Journal of the Korea Concrete Institute, 29(4), 361-369. https://doi.org/10.4334/JKCI.2017.29.4.361
  17. Yim, H. J., Lee, H. J., and Kim, J. H. (2017), Evaluation of mortar setting time by using electrical resistivity measurements. Construction and Building Materials, Elsevier, 146, 679-686. https://doi.org/10.1016/j.conbuildmat.2017.04.088
  18. Wenner, F., (1915), A Method of Measuring Earth Resistivity, Journal of the Franklin Institute, 180(3), 373-375. https://doi.org/10.1016/S0016-0032(15)90298-3