• Title/Summary/Keyword: 탄산화 기술

Search Result 129, Processing Time 0.022 seconds

Durability Analysis and Development of Probability-Based Carbonation Prediction Model in Concrete Structure (콘크리트 구조물의 확률론적 탄산화 예측 모델 개발 및 내구성 해석)

  • Jung, Hyunjun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.343-352
    • /
    • 2010
  • Recently, many researchers have been carried out to estimate more controlled service life and long-term performance of carbonated concrete structures. Durability analysis and design based on probability have been induced to new concrete structures for design. This paper provides a carbonation prediction model based on the Fick's 1st law of diffusion using statistic data of carbonated concrete structures and the probabilistic analysis of the durability performance has been carried out by using a Bayes' theorem. The influence of concerned design parameters such as $CO_2$ diffusion coefficient, atmospheric $CO_2$ concentration, absorption quantity of $CO_2$ and the degree of hydration was investigated. Using a monitoring data, this model which was based on probabilistic approach was predicted a carbonation depth and a remaining service life at a variety of environmental concrete structures. Form the result, the application method using a realistic carbonation prediction model can be to estimate erosion-open-time, controlled durability and to determine a making decision for suitable repair and maintenance of carbonated concrete structures.

A Study on Survey of Carbonation for Sound, Cracked, and Joint Concrete in RC Column in Metropolitan City (국내 도심지 콘크리트 교각 취약부의 탄산화 조사에 대한 연구)

  • Kwon, Seung Jun;Park, Sang Sun;Nam, Sang Hyuk;Cho, Ho Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.116-122
    • /
    • 2007
  • The concrete structures in Metropolitan city are usually exposed to carbonation and corrosion of embedded steel occurs due to the carbonation. In inspection and diagnosis of concrete structures, carbonation depth in sound concrete is mainly evaluated and service life for concrete structure is predicted based on the result. Generally, however, mass concrete structures such as columns have construction joint for suitable placing and also have cracks in early-age. In this study, carbonation depth in RC columns used for 20 years in metropolitan city is evaluated and also analyzed by considering the local conditions like sound, cracked, and joint area. The carbonation depth in cracked and joint area is more rapid than that in sound area, and it is thought to be more desirable to consider this effect in concrete structures with small cover depth. Furthermore, the technique for carbonation prediction in cracked concrete is derived in terms of crack width and the results from this technique are verified by comparing those from previous research.

Carbonation Evaluation After CO2 Curing of Concrete Bricks Using Industrial by-products (산업부산물을 사용한 콘크리트 벽돌의 CO2 양생 후 탄산화 평가 )

  • Hoon Moon;Namkon Lee;Jung-Jun Park;Gum-Sung Ryu;Gi-Joon Park;Indong Jang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.373-380
    • /
    • 2023
  • This study investigated the carbonation of concrete brick cured in a CO2 environment for the utilization of CO2 captured in power plants. Concrete brick specimens were produced with electric arc furnace reducing slag (ERS) and electric arc furnace oxidizing slag (EOS), and cured for 3 days in a CO2 chamber with a concentration of 20 % or in a constant temperature and humidity chamber. The weight change, compressive strength, flexural strength and carbonation depth of concrete bricks were measured. From the results, it was found that when subjected to CO2 curing, CO2 was absorbed at the level of 2.4 % of the weight of the specimen. The specimen incorporating ERS showed the highest carbonation depth, and satisfied KS F4004 standards for the concrete brick. Therefore, it is expected that the captured CO2 can be utilized in the CO2 curing process of concrete brick.

Measurement of Carbonation Depth of Concrete in Old Buildings and Experimental Evaluation of Carbonation Degree and CO2 Absorption Using Differential Thermal Gravimetric Analysis, Part2 (노후 건축물의 콘크리트 탄산화 깊이 측정과 시차열 중량분석을 통한 탄산화도 및 CO2 흡수량 실험적 평가, Part2)

  • Lee, Sang-Hyun;Ki, Jun-Do;Cho, Hong-Bum;Park, Chang-Gun;Kim, Young-Sun;Moon, Hyung-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.317-318
    • /
    • 2023
  • This study is part of the carbonation degree DB accumulation through quantitative analysis of carbonation depth, Ca(OH)2 and CO2 according to the type of finish and years of use of old concrete structures in order to predict the amount of CO2 that can be absorbed through carbonation of concrete. To this end, the depth of carbonation of the concrete core specimen is measured using an indicator, and the dry amount of water combined with CO2 in the sample is measured using a differential thermal gravimetric analyzer for samples in the carbonation area and non-carbonated area classified by the indicator, and the absorption compared to the weight of the sample. The amount of absorbed CO2 was calculated. In addition, the degree of carbonation was calculated through quantitative comparison of Ca(OH)2 in the carbonation section and non-carbonation section. In the future, we will continue to add the survey and analysis data of dismantled structures and use them as basic data for estimating the amount of carbon dioxide that can be absorbed according to the exposure conditions and years of use by concrete mix.

  • PDF

Component and Phase Analysis of Calcium Silicate Cement Clinker by Raw Materials Mix Design (원료 배합에 따른 칼슘 실리케이트 시멘트 클링커의 성분 및 상 분석)

  • Lee, Hyang-Sun;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.3
    • /
    • pp.251-258
    • /
    • 2022
  • In the cement industry, in order to reduce CO2 emissions, technology for raw materials substitution and conversion, technology for improving process efficiency of utilizing low-carbon new heat sources, and technology for collecting and recycling process-generated CO2 are being developed. In this study, we conducted a basic experiment to contribute to the development of CSC that can store CO2 as carbonate minerals among process-generated CO2 capture and recycling technologies. Three types of CSC clinker with different SiO2/(CaO+SiO2) molar ratios were prepared with the clinker raw material formulation, and the characteristics of the clinker were analyzed. As a result of analysis and observation of CSC clinker, wollastonite and rankinite were formed. In addition, as a result of the carbonation test of the CSC paste, it was confirmed that calcite was produced as a carbonation product. The lower the SiO2/(CaO+SiO2) molar ratio in the CSC clinker chemical composition, the lower the wollastonite production amount, and the higher the rankinite production amount. And the amount of calcite production increased with the progress of carbonation of the CSC paste specimen. It is judged that rankinite is more reactive in mineralizing CO2 than wollastonite.

A study on the reaction of carbonation in the preparation of lithium carbonate powders (탄산리튬 분말 제조에 있어서 탄산화 반응에 관한 연구)

  • Yang, Jae-Kyo;Jin, Yun-Ho;Yang, Dae-Hoon;Kim, Dae-Weon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.5
    • /
    • pp.222-228
    • /
    • 2019
  • In this study, we carried out the experiment to prepare lithium carbonate powder through gas-liquid reactions with a lithium-containing solution and $CO_2$ gas using lithium hydroxide, lithium chloride, and lithium sulfate. Thermodynamically, the carbonation reaction of a lithium-containing solution showed that aqueous reaction of lithium hydroxide occurs spontaneously, but aqueous reactions of lithium chloride and lithium sulfate does not occur spontaneously. In the case of lithium hydroxide solution, the recovery rate of lithium carbonate was 69.8 % at room temperature ($25^{\circ}C$), and increased to 89.4 % at $60^{\circ}C$. In the case of lithium chloride and lithium sulfate solution, lithium carbonate could be prepared using sodium hydroxide as an additive, but the recovery rates were 19.2 % and 16.7 %, respectively.

Carbon Dioxide Capture and Carbonate Synthesis via Carbonation of KOH-Dissolved Alcohol Solution (KOH-알코올 용액의 탄산화를 통한 이산화탄소 포집 및 탄산염 합성)

  • Kim, Eung-Jun;Han, Sang-Jun;Wee, Jung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.11
    • /
    • pp.597-606
    • /
    • 2015
  • This work investigates the carbonation of KOH-dissolved methanol and ethanol solution systems carried out for $CO_2$ fixation. Potassium methyl carbonate (PMC) and potassium ethyl carbonate (PEC) were synthesized during the reaction in each solution as the solid powder, and they were characterized in detail. The amount of $CO_2$ chemically absorbed to produce the PMC and PEC precipitates were calculated to be 97.90% and 99.58% of their theoretical values, respectively. In addition, a substantial amount of $CO_2$ was physically absorbed in the solution during the carbonation. PMC precipitates were consisted of the pure PMC and $KHCO_3$ with the weight ratio of 5:5, respectively. PEC precipitates were also mixture of the pure PEC and $KHCO_3$ with the weight ratio of 8:2, respectively. When these two precipitates were dissolved in excess water, methanol and ethanol were regenerated remaining solid $KHCO_3$ in the solutions. Therefore, the process has the potential to be one of the efficient options of CCS and CCU technologies.

Study on Carbon Dioxide Storage through Mineral Carbonation using Sea Water and Paper Sludge Ash (해수와 제지슬러지소각재의 광물탄산화 반응을 이용한 이산화탄소 저장 연구)

  • Kim, Dami;Kim, Myoung-jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.18-24
    • /
    • 2016
  • Mineral carbonation is a technology for permanently storing carbon dioxide by reacting with metal oxides containing calcium and magnesium. In this study, we used sea water and alkaline industrial by-product such as paper sludge ash (PSA) for the storage of carbon dioxide through direct carbonation. We found the optimum conditions of both sea water content (mixing ratio of sea water and PSA) and reaction time required in the direct carbonation through various experiments using sea water and PSA. In addition, we compared the amounts of carbon dioxide storage with the cases when sea water and ultra-pure water were separately used as solvents in the direct carbonation with PSA. The amount of carbon dioxide storage was calculated by using both solid weight increase through the carbonation reaction and the contents of carbonate salts from thermal gravimetric analysis. PSA particle used in this study contained 67.2% of calcium. The optimum sea water content and reaction time in the carbonation reaction using sea water and PSA were 5 mL/g and 2 hours, respectively, under the conditions of 0.05 L/min flow rate of carbon dioxide injected at $25^{\circ}C$ and 1 atm. The amounts of carbon dioxide stored when sea water and ultra-pure water were separately used as solvents in the direct carbonation with PSA were 113 and $101kg\;CO_2/(ton\;PSA)$, respectively. The solid obtained through the carbonation reaction using sea water and PSA was composed of mainly calcium carbonate in the form of calcite and a small amount of magnesium carbonate. The solid obtained by using ultra-pure water, also, was found to be carbonate salt in the form of calcite.

Development Status and Research Direction in the Mineral Carbonation Technology Using Steel Slag (제철 슬래그를 이용한 광물 탄산화 기술의 개발 현황과 연구 방향)

  • Son, Minah;Kim, Gookhee;Han, Kunwoo;Lee, Min Woo;Lim, Jun Taek
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.141-155
    • /
    • 2017
  • In the present paper, we investigated the development status of precipitated calcium carbonate (PCC) production using steel slag, which is one of mineral carbonation (MC) technologies, from the standpoint of $CO_2$ utilization. Principle, feature, and global and domestic development status of the mineral carbonation technology were discussed together with the overview of the production method and market of PCC. Mineral carbonation is known as stable and environmentally-friendly technology enabling economical treatment of industrials wastes. Typically, PCC is produced by the reaction of $CO_2$ with supernatant solution after Ca extraction from steel slag followed by the separation of solid and liquid. The development status of MC using steel slag is at the pilot stage (Slag2PCC at Aalto University), and there remains the process economics improvement for commercialization. Key technologies for the further development are efficient extraction of Ca ions from steel slag including impurities removal, valorization of PCC via shape and size control, usage development and value-addition of residual slag, and optimization of reaction conditions for continuous process setup, etc.

Performance Evaluation of Various Concrete Repair Materials to Corrosion Prevent of Rebar (철근의 부식 방지를 위한 다양한 콘크리트 보수재료들의 성능평가)

  • Tae-Kyun Kim;Jong-Sub Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.458-466
    • /
    • 2023
  • Structures in our surroundings deteriorate over time due to environmental and chemical factors, resulting in a decrease in their performance. The primary causes of degradation in concrete structures are carbonation, salt damage, and freeze-thaw cycles. Various maintenance methods exist to address these degradation issues. However, research and technological development for existing maintenance methods have been ongoing, but the accuracy and effectiveness of repair materials and techniques have not been extensively validated. Therefore, in this study, we conducted a material performance evaluation of various manufacturers' repair materials. Based on this evaluation, we applied corrosion inhibitors and epoxy, which are the methods most closely related to crack repair, to assess the durability performance against carbonation, salt damage, and freeze-thaw cycles. The results show approximately a two-fold performance improvement against carbonation and salt damage, and a 5% enhancement in repair performance against freeze-thaw cycles. Thus, it is considered effective in preventing rebar corrosion when appropriate maintenance is carried out according to environmental and chemical factors during structural repairs.