• Title/Summary/Keyword: 탄산염지역

Search Result 129, Processing Time 0.021 seconds

The Effects of Carbonate Minerals in Gully-pot Sediment on the Leaching Behavior of Heavy Metals Under Acidified Environment (우수관퇴적물에 함유된 탄산염광물이 산성환경에서의 중금속 용출거동에 미치는 영향 평가)

  • 이평구;유연희
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.257-271
    • /
    • 2002
  • One of the main interests in relation to heavily contaminated gully-pot sediment in urban area is the short term mobility of heavy metals, which depends on the pH of acidic rainwater and on the buffering effects of carbonate minerals. The buffering effects of carbonates are determined by titration (acid addition). Leaching experiments are carried out in solutions with variable initial HN03 contents for 24h. The gully-pot sediment appears to be predominantly buffered by calcite and dolomite. In case of sediment samples, which highly contain carbonates, pH decreases more slowly with increasing acidity. On the other hand, for the sediment samples, which less contain carbonate minerals, pH rapidly drops until it reaches about 2 then it decreases slowly. The leaching reactions are delayed until more acid is added to compensate for the buffering effects of carbonates. The Zn, Cu, Pb and Mn concentrations of leachate rapidly increase with decreased pH, while Cd, Co, Ni, Cr and Fe dissolutions are very slow and limited. The solubility of heavy metals depends not only on thc pH values of leachatc but also on the speciation in which metals are associated with sediment particles. In slightly to moderately acid conditions, Zn, Cd, Co, Ni and Cu dissolutions become increasingly important. As deduced from leaching runs, the relative mobility of heavy metals at pH of 5 is found to be: Zn > Cd > Co > Ni > Cu » Pb > Cr, suggesting that moderately acid rainwater leach Zn, Cd, Co, Ni and Cu from thc contaminated gully-pot sediment, while Pb and Cr would remain fixed. The buffering effects of Ca- and Mg-carbonates play an important role in delaying as well as limiting the leaching reactions of heavy metals from highly contaminated gully-pot sediment. The extent of such a secondary environmental pollution will thus depends on how well the metals in sediment can be leached by somewhat acidic rain water. Changes in the physicochemical environments may result in the severe environmental pollution of heavy metals. These results are to be taken into account in the management of contaminated sediments during rainstorms.

Characteristics of Heavy Metal Pollution in Contaminated Roadside Sediments in Jeonju City, Korea (전주시 도로변 퇴적물의 중금속 오염 특성)

  • Cho, Ktu-Seong
    • Journal of the Korean earth science society
    • /
    • v.24 no.8
    • /
    • pp.711-720
    • /
    • 2003
  • To study characteristics of the heavy metal pollution, sediment samples were collected at 67 sites on the roadside of Jeonju city during summer and winter, 2002. The total concentration of metals including Cd, Co, Cr, Cu, Ni, Pb, Zn, and Mn in the sediment samples were determined. The results indicate that the roadside sediments in Jeonju city have lower (1/2 to 1/7 times) concentrations of Zn, Cu, Pb and Cd than the metal concentrations previously reported for roadside soil, dust and sewage sludges in Seoul. However, the metal concentrations are higher than environmental quality criteria in soil suggested from several countries, and Zn, Cu, Pb and Cd contents are usually 2-7 times higher than the world average contents of the metals in natural soil. Although pollution index and concentrations of Cr, Ni, Pb and Zn in the roadside sediments at industrial area were usually higher than those of downtown and residential area, the metal having small vehicle- and steel-related industries had high concentrations of metals. The results of chemical partitioning analysis showed that Pb, Zn and Mn are mainly associated with carbonate/adsorbed and Fe-Mn oxide phases but that Cu is largely associated with the organic and sulfide fractions. It thus indicates that both large and small (vehicle- and steel-related) industries are main sources of heavy metal contamination. Due to high solubility of the carbonate phases by natural leaching episodes, the carbonate/adsorbed Cd, Co, Ni, Pb, Zn and Mn in the roadside sediments may serve as a potential source of contamination.

무안군 해안지역의 지하수질과 해수침투영향

  • Jeong Chan-Deok;Seo Gu-Won
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.320-323
    • /
    • 2005
  • 무안군 해안지역과 접해있는 청계면-삼향면 일대를 따라 지하수 및 지표수의 수질특성을 규명하여 해수침투 영향정도를 파악하고자 하였다. 연구지역을 수리적특성에 따라 소유역으로 나누어 조사한 결과 구조선이 발달한 지역을 중심으로 해안에서부터 해수침투의 징후를 보였다. 수질분석결과 주로 $Ca-HCO_3$ 유형, $Na-HCO_3$, Na-Cl 유형이 대부분이었다. 이는 탄산염광물과 해수침투의 영향에 의한 것으로 판단되며, 대부분 구조선이 발달한 지역에서 높게 나타났다. 따라서 구조선발달지역의 수질분석을 실시할 경우 해수침투영향을 고려하여 시행해야할 것으로 판단된다.

  • PDF

Mass Physical Properties in Deep-Sen Sediment from the Clarion-Clipperton Fracture Zone, Northeast Equatorial Pacific (북동태평양 클라리온-클리퍼톤 균열대 심해저 퇴적물의 물리적 특성에 관한 연구)

  • Chi, Sang-Bum;Lee, Hyun-Bok;Kim, Jong-Uk;Hyeong, Ki-Seong;Ko, Young-Tak;Lee, Kyeong-Yang
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.739-752
    • /
    • 2006
  • Deep-sea surface sediments acquired by multiple corer from 69 stations in the Clarion-Clipperton fracture zone of the northeast equatorial Pacific, were examined to understand the correlation of mass physical properties and sedimen-tological processes. The seabed of the middle part ($8-12^{\circ}N$) of the study area is mainly covered by biogenic siliceous sediment compared with pelagic red clays in the northern part ($16-17^{\circ}N$). In the southern part ($5-6^{\circ}N$), water depth is shallower than carbonate compensation depth (CCD). The mass physical properties such as grain size distribution, mean grain size, water content, specific grain density, wet bulk density, void ratio, and porosity of sediments are distinctly different among the three parts of the study area. Surface sediments in northern part are characterized by fine grain size and low water contents possibly due to low primary productivity and high detrital input. Conversely, sediments in the middle part are characterized by coarse grain size and high water contents, which might be caused by high surface productivity and deeper depth than CCD. The sediments show low water contents and high density in the southern part, which can be explained by shallower depth than CCD. Our results suggest that the variations in mass physical properties of sediments are influenced by combined effects including biogenic primary productivity of surface water, water depth, especially with respect to CCD, sedimentation rate, detrital input, and the geochemistry of the bottom water (for example, formation of authigenic clay minerals and dissolution of biogenic grains).

Mantle Source Lithologies of Late Cenozoic Basaltic Rocks and Two Varieties of Enriched Mantle in the Korean Peninsula (한반도 신생대 후기 현무암의 근원 맨틀 암상과 두 종류의 부화 맨틀)

  • Choi, Sung Hi
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.183-197
    • /
    • 2022
  • Geochemical data, including Sr-Nd-Pb-Mg-Zn isotopes, reported on the late Cenozoic intraplate basaltic rocks in the Korean Peninsula (Mt. Baekdu, Jeongok, Baengnyeong Island, Pyeongtaek, Asan, Ganseong, Ulleung Island, Dok Island, and Jeju Island) are summarized to constrain their mantle source lithologies, and the nature of mantle end-members required. In the Sr-Nd isotope correlation diagram, Jeju basalts plot in the field of EM2-type oceanic island basalts (OIB), while the other basalts fall in the EM1-type OIB field. In Pb-Pb isotope space, Jeju basalts show a mixing array between Indian MORB and EM2 component, whereas the other basalts display an array with EM1 component. The Korean basalts were derived from a hybrid source of garnet lherzolite and recycled stagnant slab materials (eclogite/pyroxenite, pelagic sediments, carbonates) in the mantle transition zone. The EM1 component could be ancient (~2.0 Ga) K-hollandite-bearing pelagic sediments that were isolated for a long period in the mantle transition zone due to their neutral buoyancy. The EM2 component might have been relatively young (probably Pacific slab) and recently recycled clay-rich pelagic sediments. Eclogite and carbonates are unlikely to account for the EM components, but they are common in the mantle source of the Korean basalts.

Hydrochemistry of Groundwater at Natural Mineral Water Plants in the Okcheon Metamorphic Belt (옥천계변성암 지역의 먹는샘물 지하수의 수리지구화학적 특성)

  • 추창오;성익환;조병욱;이병대;김통권
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.3
    • /
    • pp.93-107
    • /
    • 1998
  • Because of its stable quantity and quality, groundwater has long been a reliable source of drinking water for domestic users. Rapid economic growth and rising standards of living have in recent years put severe demands on drinking water supplies in Korea. Groundwaters that are currently being used for natural mineral water were hydrochemically evaluated and investigated in order to maintain their quality to satisfy strict health standards. There exist 15 natural mineral water plants in the Okcheon metamorphic belt. Characteristics of groundwaters are different from those of other areas in that electrical conductivity, hardness, contents of Ca, Mg and $HCO_3$are relatively high. The content of major cations is in the order of Ca>Mg, Na>K, whereas that of major anions shows the order of $HCO_3$>$SO_4$>Cl>F. The fact that the Ca-Mg-HCO$_3$type is mostly predominant among water types reflects that dissolution of carbonates that are abundantly present in the metamorphic rocks plays an important part in groundwater chemistry. Representative correlation coefficients between chemical species show Mg-$HCO_3$(0.92), Ca-$HCO_3$(0.88), Ca-Mg(0.80), Ca-Cl(0.78), Mg-$SO_4$(0.78), Ca-$SO_4$(0.71), possibly due to the effect by dissolution of carbonates, gypsum or anhydrite. Determinative coefficients between some chemical species represent a good relationship, especially for EC-(K+Na+Ca), Ca-$HCO_3$, Ca-Mg, indiacting that they are similar in chemical behaviors. According to saturation index, most chemical species are undersaturated with respect to major minerals, except for some silica phases. Groundwater is slightly undersaturated with respect to calcite and dolomite, whereas it is still greatly undersaturated with respect to gypsum, anhydrite and fluorite, Based on the Phase equilibrium in the systems $NA_2$O-$Al_2$$O_3$-$SiO_2$-$H_2$O and $K_2$O-$Al_2$$O_3$-$SiO_2$-$H_2$O, it is clear that groundwater is in equilibrium with kaolinite, evolved from the stability area of gibbsite during water-rock interaction. It is expected that chemical evolution of groundwater continue to proceed with increasing pH by reaction of feldspars, with calcite much less reactive.

  • PDF

Carbonate Biomineralization Using Speleothems and Sediments from Baekasan Acheon Cave (Limestone Cave) in Hwasun-gun, Jeollanam-do, South Korea (전남 화순군 백아산 아천동굴(석회동굴) 동굴생성물을 이용한 생광물화작용 연구)

  • Kim, Yumi;Seo, Hyunhee;Jo, Kyoung-nam;Jung, Dayae;Shin, Seungwon;Huh, Min;Roh, Yul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.113-121
    • /
    • 2018
  • Baekasan Acheon cave located in Hwasun-gun, Jeollanam-do is a natural limestone cave only found in this province. In this study, the mineralogical and geochemical characteristics of speleothems collected from Baekasan Acheon cave were identified and the capability of carbonate mineral formation by aerobic microorganisms enriched from the cave and the mineralogical and geochemical characteristics of carbonate minerals formed by the microorganisms were investigated. The samples of sediments (clay) and speleothems (shelfstone and cave coral) were collected at three sites in the cave. The samples of shelfstone and cave coral were identified mainly as carbonate mineral, Mg-rich calcite, and clay minerals were composed of quartz, muscovite, and vermiculite by X-ray diffraction (XRD) analysis. To cultivate the carbonate forming microorganisms, parts of the sediment and speleothems were placed in D-1 medium containing urea, respectively, and the growth of microorganisms was observed under the aerobic condition at room temperature. The capability of carbonate mineralization of the cultured Baekasan Acheon cave microorganisms was examined through adding 1% (v/v) of the cultured microorganisms and calcium sources, Ca-acetate or Ca-lactate, into the D-1 medium. XRD analysis showed that the microorganisms cultured in cave deposits formed calcium carbonate ($CaCO_3$) under all conditions, and these microbial carbonate minerals included calcite and vaterite. The morphological characteristics and chemical composition of biologically formed minerals were observed by SEM-EDS showed various crystal forms such as rhomboid, spherical, perforated surface with Ca, C, and O of major chemical components. The existence of such microorganisms in the cave can contribute the formation of carbonate minerals, and it is likely to affect the geochemical cycles of carbon and calcium in the cave.

Hydrochemistry and Origin of Noble Gases and $CO_2$ Gas Within Carbonated Mineral Waters in the Kyeoungbuk-Kangwon Province, Korea (경북-강원일대 탄산약수의 수질화학과 탄산 및 영족기체 기원)

  • Jeong, Chan-Ho;Yoo, Sang-Woo;Kim, Kyu-Han;Nagao, Keisuke
    • The Journal of Engineering Geology
    • /
    • v.21 no.1
    • /
    • pp.65-77
    • /
    • 2011
  • Hydrochemical and carbon isotopic (${\delta}^{13}C_{DIC}$) analyses of 11 water samples, and noble gas isotopic analyses of 8 water samples collected in the Kyeoungbuk and Kangwon areas of Korea were performed to determine their hydrochemical characteristics and to interpret the source of noble gases and $CO_2$ gas in the water. The carbonated mineral waters are weakly acidic (PH = 5.59-6.04), and electrical conductivity ranges from 302 to $864\;{\mu}S/cm$. The chemical composition of all the water samples is Ca-$HCO_3$ type. The high contents of Fe and Mn exceed the safe limits for drinking water. The ${\delta}^{13}C_{DIC}$ values of the samples range from -5.30‰ to -2.84‰, indicating that the carbon is supplied mainly from a deep-seated source and to a lesser degree from an inorganic carbonate source. The $^3He/^4He$ ratios of the samples range from $1.51{\times}10^{-6}$ to $6.45{\times}10^{-6}$. The samples plot into three groups on a $^3He/^4He$ versus $^4He/^{20}Ne$ diagram: the deep-seated field (e.g., a mantle source), the atmospheric field, and the air-mantle mixing field. A wide range of $^4He/^{20}Ne$ ratios is observed ($0.036{\times}10^{-6}$ to $1.76{\times}10^{-6}$), indicating that while radiogenic $^4He$ is dominant in these water samples, mantle-origin He is also present. The supply of $CO_2$ gas and noble gases from a deep-seated source to carbonated waters is inferred to be controlled by geological structures such as faults and geological boundaries.

Groundwater Quality and Contamination in Dukpyung area (충북 괴산군 덕평리 일대의 지하수 수질과 오염)

  • 김형돈;우남칠;최미정
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.3
    • /
    • pp.141-147
    • /
    • 1998
  • This study was initiated to identify the general groundwater quality and the effects of heavy-metal enrichments in the black shales and coal materials in Dukpyung area. Groundwater quality could be divided into three groups based on the major weathering processes in the groundwater system; Group I of carbonate weathering, Group II of silicate weathering with the probable effects of acidic mine drainage, and Group III of silicate weathering with relatively high concentrations of chloride components in anions. Metal contamination of groundwater was not observed. Locally, however, acidic mine drainage appeared to be produced and recharged into the groundwater system. In addition, contamination by NO$_3$-N ranged 2 to 3 times higher than the drinking water standards, probably due to infiltration of domestic sewage and/or fertilizers into the shallow aquifer.

  • PDF

Evaluation of Heavy Metal Contamination in Streams within Samsanjeil and Sambong Cu Mining Area (삼산제일.삼봉 동광산 주변 수계의 중금속 오염도 평가)

  • Kim, Soon-Oh;Jung, Young-Il;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.3 s.49
    • /
    • pp.171-187
    • /
    • 2006
  • The status of heavy metal contamination was investigated using chemical analyses of stream waters and sediments obtained from Samsanjeil and Sambong Cu mining area in Goseong-gun, Gyeongsangnam-do. In addition, the degree and the environmental risk of heavy metal contamination in stream sediments was assessed through pollution index (Pl) and danger index (DI) based on total digestion by aqua regia and fractionation of heavy metal contaminants by sequential extraction, respectively. Not only the degree of heavy metal contamination was significantly higher in Samsanjeil area than in Sambong area, but its environmental risk was also revealed much more serious in Samsanjeil area than in Sambong area. The differences in status and level of contamination and environmental risk between both two mining areas may be attributed to existence of contamination source and geology. Acid mine drainage is continuously discharged and flows into the stream in Samsanjeil mining area, and it makes the heavy metal contamination in the stream more deteriorated than in Sambong mining area in which acid mine drainage is not produced. In addition, the geology of Samsanjeil mining area is mainly comprised of andesitic rocks including a small amount of calcite and having lower pH buffering capacity fer acid mine drainage, and it is likely that the heavy metal contamination cannot be naturally attenuated in streams. On the contrary, the main geology of Sambong mining area consists of pyroclastic sedimentary Goseong formation containing a high content of carbonates, particularly calcite, and it seems that these carbonates of high pH buffering capacity prevent the heavy metal contamination from proceeding downstream in stream within that area.