DOI QR코드

DOI QR Code

Mantle Source Lithologies of Late Cenozoic Basaltic Rocks and Two Varieties of Enriched Mantle in the Korean Peninsula

한반도 신생대 후기 현무암의 근원 맨틀 암상과 두 종류의 부화 맨틀

  • Choi, Sung Hi (Department of Geological Sciences, Chungnam National University)
  • 최성희 (충남대학교 지질환경과학과)
  • Received : 2022.08.09
  • Accepted : 2022.09.01
  • Published : 2022.09.30

Abstract

Geochemical data, including Sr-Nd-Pb-Mg-Zn isotopes, reported on the late Cenozoic intraplate basaltic rocks in the Korean Peninsula (Mt. Baekdu, Jeongok, Baengnyeong Island, Pyeongtaek, Asan, Ganseong, Ulleung Island, Dok Island, and Jeju Island) are summarized to constrain their mantle source lithologies, and the nature of mantle end-members required. In the Sr-Nd isotope correlation diagram, Jeju basalts plot in the field of EM2-type oceanic island basalts (OIB), while the other basalts fall in the EM1-type OIB field. In Pb-Pb isotope space, Jeju basalts show a mixing array between Indian MORB and EM2 component, whereas the other basalts display an array with EM1 component. The Korean basalts were derived from a hybrid source of garnet lherzolite and recycled stagnant slab materials (eclogite/pyroxenite, pelagic sediments, carbonates) in the mantle transition zone. The EM1 component could be ancient (~2.0 Ga) K-hollandite-bearing pelagic sediments that were isolated for a long period in the mantle transition zone due to their neutral buoyancy. The EM2 component might have been relatively young (probably Pacific slab) and recently recycled clay-rich pelagic sediments. Eclogite and carbonates are unlikely to account for the EM components, but they are common in the mantle source of the Korean basalts.

한반도의 판 내부 기원 신생대 후기 현무암류(백두산, 전곡, 백령도, 평택, 아산, 간성, 울릉도, 독도, 제주도 등)에 대해 그 동안에 보고된 Sr-Nd-Pb-Mg-Zn 동위원소를 포함한 지구화학 자료를 종합정리하고, 그 근원 맨틀 속에 포함된 암상을 파악한 후 필요한 맨틀 단성분의 종류와 그 성인에 대해서 고찰하였다. Sr-Nd 동위원소 상관도에서 제주도는 EM2형 해양도 현무암의 영역에 도시되는 반면 다른 지역 현무암류는 EM1형 해양도 현무암의 영역에 도시된다. Pb-Pb 동위원소 상관도에서 제주도는 인도양 중앙해령 현무암과 EM2 단성분 간의 혼합 배열을 보이는 반면, 다른 지역 현무암류는 인도양 중앙해령 현무암과 EM1 단성분 간의 혼합 배열을 보인다. 한반도 현무암류는 석류석 러어조라이트와 함께 과거에 섭입하여 맨틀 전이대에 정치하고 있는 해양판 물질(에클로자이트/휘석암, 원양 퇴적물, 탄산염)이 혼합된 맨틀에서 유래되었다. EM1형 단성분의 역할을 하는 물질은 오래전(~2.0 Ga)에 섭입되어 중성 부력으로 맨틀 전이대에 정치되어 있는 (함)K-Hollandite 원양 퇴적물로 추정된다. EM2 단성분은 맨틀 속에 섭입된 후 빠른 시간 안에 재활성된 상대적으로 젊은(아마도 태평양판의) 원양 점토 퇴적물일 가능성이 높다. 에클로자이트와 탄산염은 EM 구성요소는 아니나 한반도 현무암의 근원 맨틀 속에 공통 인자로 포함되어 있다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행되었습니다(NRF-2022R1A2C1003508). 심사과정에서 유용한 지적을 해주신 익명의 심사위원분들께 감사드립니다.

References

  1. Baek, S., Choi, S.H., Lee, S.-G., Lee, S.R. and Lee, H.M., 2014, Geochemistry of anorthositic xenoliths and host tholeiite basalt from Jeju Island, South Korea. Geosciences Journal, 18, 125-135. https://doi.org/10.1007/s12303-013-0060-9
  2. Basu, A.R., Junwen, W., Wankang, H., Guanghong, X. and Tatsumoto, M., 1991, Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: implications for their origin from suboceanic-type mantle reservoirs. Earth and Planetary Science Letters, 105, 149-169. https://doi.org/10.1016/0012-821X(91)90127-4
  3. Bizimis, M., Salters, V.J.M. and Dawson, J.B., 2003, The brevity of carbonatite sources in the mantle: evidence from Hf isotopes. Contributions to Mineralogy and Petrology, 145, 281-300. https://doi.org/10.1007/s00410-003-0452-3
  4. Bodinier, J.-L. and Godard, M., 2004, Orogenic, ophiolitic, and abyssal peridotites. In: Carlson, R.W. (Ed.) The Mantle and Core: Treatise on Geochemistry, Vol. 2, Elsevier, pp. 103-170.
  5. Brenna, M., Cronin, S.J., Smith, I.E.M., Maas, R. and Sohn, Y.K., 2012a, How small-volume basaltic magmatism systems develop: a case study from the Jeju Island Volcanic Field, Korea. Journal of Petrology, 53, 985-1013. https://doi.org/10.1093/petrology/egs007
  6. Brenna, M., Cronin, S.J., Smith, I.E.M., Sohn, Y.K. and Maas, R., 2012b, Spatio-temporal evolution of a dispersed magmatic system and its implications for volcano growth, Jeju Island Volcanic Field, Korea. Lithos, 148, 337-352. https://doi.org/10.1016/j.lithos.2012.06.021
  7. Brenna, M., Cronin, S.J., Smith, I.E.M., Sohn, Y.K. and Nemeth, K., 2010, Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea. Contributions to Mineralogy and Petrology, 160, 931-950. https://doi.org/10.1007/s00410-010-0515-1
  8. Brenna, M., Price, R., Cronin, S.J., Smith, I.E.M., Sohn, Y.K., Kim, G.B. and Maas, R., 2014, Final magma storage depth modulation of explosivity and trachyte-phonolite genesis at an intraplate volcano: a case study from Ulleung Island, South Korea. Journal of Petrology, 55, 709-747. https://doi.org/10.1093/petrology/egu004
  9. Chang, K.-H., Park, J.-B. and Kwon, S.-T., 2006, Geochemical characteristics of trachytes in Jeju Island. Journal of the Geological Society of Korea, 42, 235-252 (in Korean with English abstract).
  10. Chen, S.-S., Lee, S.-G., Lee, T.J., Lee, Y.-S. and Liu, J.-Q., 2018, Multi-stage magmatic plumbing system of the volcano: A case study from Ulleung Island, South Korea. Lithos, 314-315, 201-215. https://doi.org/10.1016/j.lithos.2018.05.028
  11. Chen, Y., Zhang, Y., Graham, D., Su, S. and Deng, J., 2007, Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China. Lithos, 96, 108-126. https://doi.org/10.1016/j.lithos.2006.09.015
  12. Choi, H.-O., Choi, S.H. and Yu, Y., 2014, Isotope geochemistry of Jeongok basalts, northernmost South Korea: Implications for the enriched mantle end-member component. Journal of Asian Earth Sciences, 91, 56-68. https://doi.org/10.1016/j.jseaes.2014.05.010
  13. Choi, H.-O., Choi, S.H., Lee, Y.S., Ryu, J.-S., Lee, D.-C., Lee, S.-G., Sohn, Y.K. and Liu, J., 2020, Petrogenesis and mantle source characteristics of the late Cenozoic Baekdusan (Changbaishan) basalts, North China Craton. Gondwana Research, 78, 156-171. https://doi.org/10.1016/j.gr.2019.08.004
  14. Choi, S.H. and Liu, S.-A., 2022, Zinc isotopic systematics of the Mt. Baekdu and Jeju Island intraplate basalts in Korea, and implications for mantle source lithologies. Lithos, 416-417, 106659. https://doi.org/10.1016/j.lithos.2022.106659
  15. Choi, S.H., 2021, Geochemistry and petrogenesis of Quaternary volcanic rocks from Ulleung Island, South Korea. Lithos, 380-381, 105874. https://doi.org/10.1016/j.lithos.2020.105874
  16. Choi, S.H., Kwon, S.-T., Mukasa, S.B. and Sagong, H., 2005, Sr-Nd-Pb isotope and trace element systematics of mantle xenoliths from Late Cenozoic alkaline lavas, South Korea. Chemical Geology, 221, 50-64.
  17. Choi, S.H., Mukasa, S.B., Kwon, S.-T. and Andronikov, A.V., 2006, Sr, Nd, Pb and Hf isotopic compositions of late Cenozoic alkali basalts in South Korea: Evidence for mixing between the two dominant asthenospheric mantle domains beneath East Asia. Chemical Geology, 232, 134-151. https://doi.org/10.1016/j.chemgeo.2006.02.014
  18. Doucet, L.S., Laurent, O., Ionov, D.A., Mattielli, N., Debaille, V. and Debouge, W., 2020, Archean lithospheric differentiation: Insights from Fe and Zn isotopes. Geology, 48, 1028-1032.
  19. Fan, Q.C., Sui, J.L., Wang, T.H., Li, N. and Sun, Q., 2006, Eruption history and magma evolution of the trachybasalt in the Tianchi volcano, Changbaishan. Acta Petrologica Sinica, 22, 1449-1457 (in Chinese with English abstract).
  20. Fukao, Y., Widiyantoro, S. and Obayashi, M., 2001, Stagnant slabs in the upper and lower mantle transition region. Reviews of Geophysics, 39, 291-323. https://doi.org/10.1029/1999RG000068
  21. Guo, W.F., Liu, J.Q. and Guo, Z.F., 2014, Temporal variations and petrogenetic implications in Changbai basaltic rocks since the Pliocene. Acta Petrologica Sinica, 30, 3595-3611 (in Chinese with English abstract).
  22. Hart, S.R., 1984, A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309, 753-757. https://doi.org/10.1038/309753a0
  23. Herzberg, C., 2011, Identification of source lithology in the Hawaiian and Canary Islands: Implications for origins. Journal of Petrology, 52, 113-146. https://doi.org/10.1093/petrology/egq075
  24. Hofmann, A.W., Jochum, K.P., Seufer, M. and White, W.M., 1986, Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth and Planetary Science Letters, 79, 33-45. https://doi.org/10.1016/0012-821X(86)90038-5
  25. Hsu, C.-N., Chen, J.-C. and Ho, K.-S., 2000, Geochemisry of Cenozoic volcanic rocks from Kirin Province, northeast China. Geochemical Journal, 34, 33-58. https://doi.org/10.2343/geochemj.34.33
  26. Huang, J. and Xiao, Y., 2016, Mg-Sr isotopes of low-δ26Mg basalts tracing recycled carbonate species: implications for the initial melting depth of the carbonated mantle in eastern China. International Geology Review, 111, B09305.
  27. Huang, J. and Zhao, D., 2006, High-resolution mantle tomography of China and surrounding region. Journal of Geophysical Research, 111, B09305.
  28. Iacovino, K., Kim, J.-S., Sisson, T., Lowenstern, J., Ri, K.- H., Jang, J.-N., Song, K.-H., Ham, S.-H., Oppenheimer, C., Hammond, J.O.S., Donovan, A., Liu, K.W. and Ryu, K.-R., 2016, Quantifying gas emissions from the "Millennium eruption" of Paektu volcano, Democratic People's Republic of Korea/China. Science Advances, 2, e1600913. https://doi.org/10.1126/sciadv.1600913
  29. Irvine, T.N. and Baragar, W.R.A., 1971, A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523-548. https://doi.org/10.1139/e71-055
  30. Kelemen, P.B., Hanghoj, K. and Greene, A.R., 2005, One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Holland, H.D. and Turekian, K.K. (Eds.) The Crust: Treatise on Geochemistry, Vol. 3, Elsevier, pp. 593-659.
  31. Kil, Y., Shin, H.-J. and Ko, B., 2007, Magma pathway of alkali volcanic rocks in Goseong, Gangwon-do, Korea. Journal of the Petrological Society of Korea, 16, 196-207 (in Korean with English abstract).
  32. Kim, D., Lee, H., Lee, W., Kim, J., Oh, J., Song, J.-H., Jung, H. and Stuart, F.M., 2021, Helium isotopes and olivine geochemistry of basalts and mantle xenoliths in Jeju Island, South Korea: Evaluation of role of SCLM on the Cenozoic intraplate volcanism in East Asia. Lithos, 390-391, 106123. https://doi.org/10.1016/j.lithos.2021.106123
  33. Kim, H.W., Kil, Y. and Lee, M.W., 2013, Petrochemical characteristics of the Duibaejae volcanic rocks from Goseong, Gangwond-do, Korea. Journal of the Korean Earth Science Society, 34, 109-119 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2013.34.2.109
  34. Kim, J.-I., Choi, S.H., Koh, G.W., Park, J.B. and Ryu, J.-S., 2019, Petrogenesis and mantle source characteristics of volcanic rocks on Jeju Island, South Korea. Lithos, 326-327, 476-490. https://doi.org/10.1016/j.lithos.2018.12.034
  35. Kim, K.-H., 2000, K-Ar ages and Nd-Sr isotopes of Dokdo alkali volcanic rocks in the East Sea, South Korea. Journal of the Geological Society of Korea, 36, 313-324 (in Korean with English abstract).
  36. Kim, K.-H., Tanaka, T., Nagao, K. and Jang, S.K., 1999, Nd and Sr isotopes and K-Ar ages of the Ulreungdo alkali volcanic rocks in the East Sea, South Korea. Geochemical Journal, 33, 317-341. https://doi.org/10.2343/geochemj.33.317
  37. Kim, S.K. and Choi, S.H., 2021, Geochemical studies on the mantle source lithologies of late Cenozoic alkali basalt from Baengnyeong, Pyeongtaek, and Asan in the Korean Peninsula. Lithos, 404-405, 106434. https://doi.org/10.1016/j.lithos.2021.106434
  38. Kim, Y.K., Lee, D.S. and Lee, K.H., 1987, Fractional crystallization of the volcanic rocks from Dog Island, Korea. Journal of the Geological Society of Korea, 23, 67-82 (in Korean with English abstract).
  39. Kogiso, T., Tatsumi, Y. and Nakano, S., 1997, Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of oceanic island basalts. Earth and Planetary Science Letters, 148, 193-205. https://doi.org/10.1016/S0012-821X(97)00018-6
  40. Koh, G.W. and Park, J.B., 2010, The study of geology and volcanism in Jeju Island (II): Petrochemistry and 40Ar/39Ar absolute ages of the volcanic rocks in Gapado-Marado, Jeju Island. Economic Environmental Geology, 43, 53-66 (in Korean with English abstract).
  41. Koh, G.W., Park, J.B., Kang, B.-R., Kim, G.-P. and Moon, D.C., 2013, Volcanism in Jeju Island. Journal of Geological Society of Korea, 49, 209-230 (in Korean with English abstract).
  42. Koh, G.W., Park, J.B., Koh, C.S., Jeon, Y., Moon, D.C., Moon, S.M. and Im, J.Y., 2021, Geology and volcanic activities of Wollabong-Gunsan, the oldest twin volcanoes in Jeju Island. Journal of the Geological Society of Korea, 57, 141-164 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2021.57.2.141
  43. Koh, J.S. and Yun, S.-H., 2005, Petrology on the Late Miocene basalts in Goseong-gun, Gangwon Province. Journal of the Korean Earth Science Society, 26, 78-92 (in Korean with English abstract).
  44. Kuritani, T., Kimura, J.-I., Miyamoto, T., Wei, H., Shimamoto, T., Maeno, F., Jin, X. and Taniguchi, H., 2009, Intraplate magmatism related to deceleration of upwelling asthenospheric mantle: implications from the Changbaishan shield basalts, northeast China. Lithos, 112, 247-258. https://doi.org/10.1016/j.lithos.2009.02.007
  45. Kuritani, T., Kimura, J.-I., Ohtani, E., Miyamoto, H. and Furuyama, K., 2013, Transition zone origin of potassic basalts from Wudalianchi volcano, Northeast China. Lithos, 156-159, 1-12. https://doi.org/10.1016/j.lithos.2012.10.010
  46. Kuritani, T., Ohtani, E. and Kimura, J.-I., 2011, Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation. Nature Geosciences, 4, 713-716. https://doi.org/10.1038/ngeo1250
  47. Kuritani, T., Xia, Q.-K., Kimura, J.-I., Liu, J., Shimizu, K., Ushikubo, T., Zhao, D., Nakagawa, M. and Yoshimura, S., 2019, Buyoant hydrous mantle plume from the mantle transition zone. Scientific Reports, 9, 6549. https://doi.org/10.1038/s41598-019-43103-y
  48. Lee, J.I., Hur, S.D., Lee, M.J., Yoo, C.M., Park, B.-K., Kim, Y., Kwon, M.S. and Nagao, K., 2002, Petrology and geochemistry of Dokdo volcanic rocks, East Sea. Ocean and Polar Research, 24, 465-482 (in Korean with English abstract). https://doi.org/10.4217/OPR.2002.24.4.465
  49. Lee, M.W., 1982, Petrology and geochemistry of Jeju volcanic island, Korea. The Science Reports of the Tohoku University, Series 3, Vol. 15, pp. 177-256.
  50. Lee, S.R. and Walker, R.J., 2006, Re-Os isotope systematics of mantle xenoliths from South Korea: Evidence for complex growth and loss of lithospheric mantle beneath East Asia. Chemical Geology, 231, 90-101. https://doi.org/10.1016/j.chemgeo.2006.01.003
  51. Liu, J., Chen, S., Guo, Z., Guo, W., He, H., You, H., Kim, H., Sung, G. and Kim, H., 2015, Geological background and geodynamic mechanism of Mt. Changbai volcanoes on the China-Korea border. Lithos, 236-237, 46-73. https://doi.org/10.1016/j.lithos.2015.08.011
  52. McKenzie, D. and O'Nions, R.K., 1991, Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology, 32, 1021-1091. https://doi.org/10.1093/petrology/32.5.1021
  53. Nakamura, E., McCulloch, M.T. and Campbell, I.H., 1990, Chemical geodynamics in the back-arc region of Japan based on the trace element and Sr-Nd isotopic compositions. Tectonophysics, 174, 207-233. https://doi.org/10.1016/0040-1951(90)90323-Z
  54. Nickel, K.G., 1986, Phase equilibria in the system SiO2-MgO-Al2O3-CaO-Cr2O3 (SMACCR) and their bearing on spinel/garnet lherzolite relationships. Neues Jahrbuch fur Mineralogie - Abhandlungen 155, 259-287.
  55. Oppenheimer, C., Wacker, L., Xu, J., Galvan, J.D., Stoffel, M., Guillet, S., Corona, C., Sigl, M., Cosmo, N.D., Hajas, I., Pan, B., Breuker, R., Schneider, L., Esper, J., Fei, J., Hammond, J.O.S. and Buntgen, U., 2017, Multi-proxy dating the "Millennium eruption' of Changbaishan to late 946 CE. Quaternary Science Reviews, 158, 164-171. https://doi.org/10.1016/j.quascirev.2016.12.024
  56. Park, J.B. and Kwon, S.-T., 1993a, Geochemical evolution of the Cheju volcanic island: Petrography and major element chemistry for stratigraphically-controlled lavas from the northern part of Cheju Island. Journal of the Geological Society of Korea, 29, 39-60 (in Korean with English abstract).
  57. Park, J.B. and Kwon, S.-T., 1993b. Geochemical evolution of the Cheju volcanic island (II): Trace element geochemistry of volcanic rocks from the northern part of Cheju Island. Journal of the Geological Society of Korea, 29, 477-492 (in Korean with English abstract).
  58. Park, J.-B. and Kwon, S.-T., 1996, Tholeiitic volcanism in Cheju Island, Korea. Journal of Petrological Society of Korea, 5, 66-83 (in Korean with English abstract).
  59. Park, J.B. and Park, K.H., 1996, Petrology and petrogenesis of the Cenozoic alkali volcanic rocks in the middle part of Korean Peninsula (1): petrography, mineral chemistry and whole rock major element chemistry. Journal of the Geological Society of Korea (in Korean with English abstract).
  60. Park, J.-B., Park, K.-H. and Cheong, C.-S., 1996, Sr-Nd-Pb isotopic compositions of lavas from Cheju Island, Korea. Journal of the Petrological Society of Korea, 5, 89-107 (in Korean with English abstract).
  61. Park, K., Choi, S.H., Cho, M. and Lee, D.-C., 2017, Evolution of the lithospheric mantle beneath Mt. Baekdu (Changbaishan): constraints from geochemical and Sr-Nd-Hf isotopic studies on peridotite xenoliths in trachybasalt. Lithos, 286, 33-344.
  62. Park, K.-H., Park, J.-B., Cheong, S.-S. and Oh, C.W., 2005, Sr, Nd and Pb isotopic systematics of the Cenozoic basalts of the Korean Peninsula and their implications for the Permo-Triassic continental collision boundary. Gondwana Research, 8, 529-538. https://doi.org/10.1016/S1342-937X(05)71153-9
  63. Pertermann, M., Hirschmann, M.M., Hametner, K., Gunther, D. and Schmidt, M.W., 2004, Experimental determination of trace element partitioning between garnet and silica-rich liquid during anhydrous partial melting of MORB-like eclogite. Geochemistry Geophysics Geosystems, 5, Q05A01.
  64. Pichat, S., Douchet, C. and Albarede, F., 2003, Zinc isotope variations in deep-sea carbonates from the eastern equatorial Pacific over the last 175 ka. Earth and Planetary Science Letters, 210, 167-178. https://doi.org/10.1016/S0012-821X(03)00106-7
  65. Plank, T. and Langmuir, C.H., 1998, The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145, 325-394. https://doi.org/10.1016/S0009-2541(97)00150-2
  66. Richard, G.C. and Iwamori, H., 2010, Stagnant slab, wet plumes and Cenozoic volcanism in East Asia. Physics of the Earth and Planetary Interiors, 183, 280-287. https://doi.org/10.1016/j.pepi.2010.02.009
  67. Rudnick, R.L. and Gao, S., 2005, Composition of the continental crust. In: Holland, H.D. and Turekian, K.K. (Eds.) The Crust: Treatise on Geochemistry, Vol. 3, Elsevier, pp. 1-64.
  68. Ryu, S., Oka, M., Yagi, K., Sakuyama, T. and Itaya, T., 2011, K-Ar ages of the Quaternary basalts in the Jeongok area, the central part of Korean Peninsula. Geosciences Journal, 15, 1-8. https://doi.org/10.1007/s12303-011-0008-x
  69. Sakuyama, T., Nagaoka, S., Miyazaki, T., Chang, Q., Takahashi, T., Hirahara, Y., Senda, R., Itaya, T., Kimura, J. and Ozawa, K., 2014, Melting of the uppermost metasomatized asthenosphere triggered by fluid fluxing from ancient subducted sediment: constraints from the Quaternary basalt lavas at Chugaryeong volcano, Korea. Journal of Petrology, 55, 499-528. https://doi.org/10.1093/petrology/egt074
  70. Shin, H.J., Kil, Y.W., Jin, M.S. and Lee, S.H., 2006, Petrological study on upper mantle xenoliths from Asan and Pyeongtaek area. Journal of the Geological Society of Korea, 42, 95-113 (in Korean with English abstract).
  71. Sobolev, A.V., Hofmann, A.W., Sobolev, S.V. and Nikogosian, I.K., 2005, An olivine-free mantle source of Hawaiian shield basalts. Nature, 434, 590-597. https://doi.org/10.1038/nature03411
  72. Sobolev, A.W., Hofmann, A.W., Kuzmin, D.V., Yaxley, G.M., Arndt, N.T., Chung, S.-L., Danushevsky, L.V., Elliott, T., Frey, F.A., Garcia, M.O., Gurenko, A.A., Kamenetsky, V.S., Kerr, A.C., Krivolutskaya, N.A., Matvienkov, V.V., Nikogosian, I.K., Rocholl, A., Sigurdsson, I.A., Sushchevskaya, N.M. and Tekaly, M., 2007, The amount of recycled crust in sources of mantle-derived melts. Science, 316, 412-417. https://doi.org/10.1126/science.1138113
  73. Sohn, Y.K., Cronin, S.J., Brenna, M., Smith, I.E.M., Nemeth, K., White, J.D.L., Murtagh, R.M., Jeon, Y.M. and Kwon, C.W., 2012, Ilchulbong tuff cone, Jeju Island, Korea, revisited: A compound monogenetic volcano involving multiple magma pulses, shifting vents, and discrete eruptive phases. Geological Society of America Bulletin, 124, 259-274. https://doi.org/10.1130/B30447.1
  74. Song, Y.-S., Park, K.-H. and Park, M.-E., 1999, Major, rareearth and trace geochemistry of Ulleungdo volcanic rocks. Journal of the Petrological Society of Korea, 8, 57-70 (in Korean with English abstract).
  75. Sun, S.-S. and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D. and Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Geological Society of London, Special Publications, No. 41, pp. 313-345.
  76. Tatsumi, Y., Shukuno, H., Yoshikawa, M., Chang, Q., Sato, K. and Lee, M.W., 2005, The petrology and geochemistry of volcanic rocks on Jeju Island: Plume magmatism along the Asian continental margin. Journal of Petrology, 46, 523-553.
  77. Tatsumoto, M. and Nakamura, Y., 1991, DUPAL anomaly in the Sea of Japan: Pb, Nd, and Sr isotopic variations at the eastern Eurasian continental margin. Geologica et Cosmologica Acta, 55, 3697-3708.
  78. Teng, F.-Z., 2017, Magnesium isotope geochemistry. Reviews in Mineralogy and Geochemistry, 82, 219-287. https://doi.org/10.2138/rmg.2017.82.7
  79. Wang, X.-J., Chen, L.-H., Hofmann, A.W., Mao, F.-G., Liu, J.-Q., Zhong, Y., Xie, L.-W. and Yang, Y.-H., 2017, Mantle transition zone-derived EM1 component beneath NE China: geochemical evidence from Cenozoic potassic basalts. Earth and Planetary Science Letters, 465, 16-28. https://doi.org/10.1016/j.epsl.2017.02.028
  80. Wee, S.-M., 1996, Geochemical characteristics of the Quaternary Jungok basalt in Choogaryong rift valley, Mid-Korean Peninsula. Economic and Environmental Geology, 29, 171-182.
  81. Wee, S.-M., 1999a, A study on the Quaternary volcanism in the Korean Peninsula - in the Choogaryong rift valley. Journal of the Geological Society of Korea, 19, 159-168 (in Korean with English abstract).
  82. Wee, S.-M., 1999b, Geochemistry and petrogenesis of Jeungok basalts in mid-Korean peninsula. Journal of Mineralogy, Petrology and Economic Geology, 94, 222-240. https://doi.org/10.2465/ganko.94.222
  83. Wei, H., Liu, G. and Gill, J., 2013, Review of eruptive activity at Tianchi volcano, Changbaishan, northeast China: implications for possible future eruptions. Bulletin of Volcanology, 75, 706. https://doi.org/10.1007/s00445-013-0706-5
  84. Won, C.K., Kim, Y.K. and Lee, M.W., 1990, The study on the geochemistry of Choogaryeong alkali basalt. Journal of the Geological Society of Korea, 26, 70-81 (in Korean with English abstract).
  85. Workman, R.K. and Hart, S.R., 2005, Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231, 53-72. https://doi.org/10.1016/j.epsl.2004.12.005
  86. Yang, Z.-F. and Zhou, J.-H., 2013, Can we identify source lithology of basalt? Scientific Reports, 3, 1856. https://doi.org/10.1038/srep01856
  87. Yang, Z.-F., Li, J., Liang, W.-F. and Luo, Z.-H., 2016, On the chemical markers of pyroxenite contributions in continental basalts in Eastern China: Implications for source lithology and the origin of basalts. Earth-Science Reviews, 157, 18-31. https://doi.org/10.1016/j.earscirev.2016.04.001
  88. Yu, S.-Y., Xu, Y.-G., Zhou, S.-H., Lan, J.-B., Chen, L.-M., Shen, N.-P., Zhao, J.-X. and Feng, Y.-X., 2018, Late Cenozoic basaltic lavas from the Changbaishan-Baoqing Volcanic Belt, NE China: products of lithosphere-asthenosphere interaction induced by subduction of the Pacific plate. Journal of Asian Earth Sciences, 164, 260-273. https://doi.org/10.1016/j.jseaes.2018.06.031
  89. Zhang, M., Guo, Z., Liu, J., Liu, G., Zhang, L., Lei, M., Zhao, W., Ma, L., Sepe, V., and Ventura, G., 2018, The intraplate Changbaishan volcanic field (China/North Korea): A review on eruptive history, magma genesis, geodynamic significance, recent dynamics and potential hazards. Earth-Science Reviews, 187, 19-52. https://doi.org/10.1016/j.earscirev.2018.07.011
  90. Zhang, M., Guo, Z., Zhang, L. and Liu, J., 2015, Late Cenozoic intraplate volcanism in Changbai volcanic field, on the border of China and North Korea: insights into deep subduction of the Pacific slab and intraplate volcanism. Journal of the Geological Society, 172, 648-663. https://doi.org/10.1144/jgs2014-080
  91. Zindler, A. and Hart, S., 1986, Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14, 493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425
  92. Zou, H., Fan, Q. and Yao, Y., 2008, U-Th systematics of dispersed young volcanoes in NE China: asthenosphere upwelling caused by piling up and upward thickening of stagnant Pacific slab. Chemical Geology, 255, 134-142. https://doi.org/10.1016/j.chemgeo.2008.06.022