• Title/Summary/Keyword: 크리깅모델

Search Result 164, Processing Time 0.02 seconds

Spatial Estimation of the Site Index for Pinus densiplora using Kriging (크리깅을 이용한 소나무림 지위지수 공간분포 추정)

  • Kim, Kyoung-Min;Park, Key-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.467-476
    • /
    • 2013
  • Site index information given from forest site map only exist in the sampled locations. In this study, site index for unsampled locations were estimated using kriging interpolation method which can interpolate values between point samples to generate a continuous surface. Site index of Pinus densiplora in Danyang area were calculated using Chapman-Richards model by plot unit. Then site index for unsampled locations were interpolated by theoretical variogram models and ordinary kriging. Also in order to assess parameter selection, cross-validation was performed by calculating mean error (ME), average standard error (ASE) and root mean square error (RMSE). In result, gaussian model was excluded because of the biggest relative nugget (37.40%). Then spherical model (16.80%) and exponential model (8.77%) were selected. Site index estimates of Pinus densiplora throughout the entire area in Danyang showed 4.39~19.53 based on exponential model, and 4.54~19.23 based on spherical model. By cross-validation, RMSE had almost no difference. But ME and ASE from spherical model were slightly lower than exponential model. Therefore site index prediction map from spherical model were finally selected. Average site index from site prediction map was 10.78. It can be expected that regional variance can be considered by site index prediction map in order to estimate forest biomass which has big spatial variance and eventually it is helpful to improve an accuracy of forest carbon estimation.

Feasibility Study of Hierarchical Kriging Model in the Design Optimization Process (계층적 크리깅 모델을 이용한 설계 최적화 기법의 유용성 검증)

  • Ha, Honggeun;Oh, Sejong;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.108-118
    • /
    • 2014
  • On the optimization design problem using surrogate model, it requires considerable number of sampling points to construct a surrogate model which retains the accuracy. As an alternative to reduce construction cost of the surrogate model, Variable-Fidelity Modeling(VFM) technique, where correct high fidelity model based on the low fidelity surrogate model is introduced. In this study, hierarchical kriging model for variable-fidelity surrogate modeling is used and an optimization framework with multi-objective genetic algorithm(MOGA) is presented. To prove the feasibility of this framework, airfoil design optimization process is performed for the transonic region. The parameters of PARSEC are used to design variables and the optimization process is performed in case of varying number of grid and varying fidelity. The results showed that pareto front of all variable-fidelity models are similar with its single-level of fidelity model and calculation time is considerably reduced. Based on computational results, it is shown that VFM is a more efficient way and has an accuracy as high as that single-level of fidelity model optimization.

Development of Computational Orthogonal Array based Fatigue Life Prediction Model for Shape Optimization of Turbine Blade (터빈 블레이드 형상 최적설계를 위한 전산 직교배열 기반 피로수명 예측 모델 개발)

  • Lee, Kwang-Ki;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.611-617
    • /
    • 2010
  • A complex system involves a large number of design variables, and its operation is non-linear. To explore the characteristics in its design space, a Kriging meta-model can be utilized; this model has replaced expensive computational analysis that was performed in traditional parametric design optimization. In this study, a Kriging meta-model with a computational orthogonal array for the design of experiments was developed to optimize the fatigue life of a turbine blade whose behavior under cyclic rotational loads is significantly non-linear. The results not only show that the maximum fatigue life is improved but also indicate that the accuracy of computational analysis is achieved. In addition, the robustness of the results obtained by six-sigma optimization can be verified by comparison with the results obtained by performing Monte Carlo simulations.

Shape Optimization of a Rotating Cooling Channel with Pin-Fins (핀휜이 부착된 회전하는 냉각유로의 최적설계)

  • Moon, Mi-Ae;Husain, Afzal;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.703-714
    • /
    • 2010
  • This paper describes the design optimization of a rotating rectangular channel with staggered arrays of pin-fins by Kriging metamodeling technique. Two non-dimensional variables, the ratio of the height to the diameter of the pin-fins and the ratio of the spacing between the pin-fins to the diameter of the pin-fins are chosen as the design variables. The objective function that is a linear combination of heat transfer and friction loss related terms with a weighting factor is selected for the optimization. To construct the Kriging model, objective function values at 20 training points generated by Latin hypercube sampling are evaluated by a three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis method with the SST turbulence model. The Kriging model predicts the objective function value that agrees well with the value calculated by the RANS analysis at the optimum point. The objective function is reduced by 11% by the optimization of the channel.

Structural Optimization for LMTT-Mover Using Sequential Kriging Based Approximation Model (순차적 크리깅 근사모델을 이용한 LMTT 이송체의 구조최적설계)

  • Park Hyung Wook;Han Dong Seop;Lee Kwon Hee;Han Geun Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.289-295
    • /
    • 2005
  • LMTT (Linear Motor-based Transfer Techn-ology) is a horizontal transfer system for the yard automation This system is based on PMLSM (Permanent Magnetic Linear Synchronous Motor) toot consists of stator modules on the rail and shuttle car. In this research, the kriging interpolation method with sequential sampling find the optimum design of mover in LMTT. The design variables are considered as the transverse, longitudinal and wheel beam's thicknesses. The objective function is set up as weight, while the constant function are set up as the stresses generated by four loading conditions. The objective function is set up as weight. The optimum results obtained by the suggested method are compared with those by the GENESIS.

  • PDF

Sensitivity Analysis of Ordinary Kriging Interpolation According to Different Variogram Models (베리오그램 모델 변화에 따른 정규 크리깅 보간법의 민감도분석)

  • Woo, Kwang-Sung;Park, Jin-Hwan;Lee, Hui-Jeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.295-304
    • /
    • 2008
  • This paper comprises two specific objectives. The first is to examine the applicability of Ordinary Kriging interpolation(OK) to finite element method that is based on variogram modeling in conjunction with different allowable limits of separation distance. The second is to investigate the accuracy according to theoretical variograms such as polynomial, Gauss, and spherical models. For this purpose, the weighted least square method is applied to obtain the estimated new stress field from the stress data at the Gauss points. The weight factor is determined by experimental and theoretical variograms for interpolation of stress data apart from the conventional interpolation methods that use an equal weight factor. The validity of the proposed approach has been tested by analyzing two numerical examples. It is noted that the numerical results by Gauss model using 25% allowable limit of separation distance show an excellent agreement with theoretical solutions in literature.

Improvement of Basis-Screening-Based Dynamic Kriging Model Using Penalized Maximum Likelihood Estimation (페널티 적용 최대 우도 평가를 통한 기저 스크리닝 기반 크리깅 모델 개선)

  • Min-Geun Kim;Jaeseung Kim;Jeongwoo Han;Geun-Ho Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.391-398
    • /
    • 2023
  • In this paper, a penalized maximum likelihood estimation (PMLE) method that applies a penalty to increase the accuracy of a basis-screening-based Kriging model (BSKM) is introduced. The maximum order and set of basis functions used in the BSKM are determined according to their importance. In this regard, the cross-validation error (CVE) for the basis functions is employed as an indicator of importance. When constructing the Kriging model (KM), the maximum order of basis functions is determined, the importance of each basis function is evaluated according to the corresponding maximum order, and finally the optimal set of basis functions is determined. This optimal set is created by adding basis functions one by one in order of importance until the CVE of the KM is minimized. In this process, the KM must be generated repeatedly. Simultaneously, hyper-parameters representing correlations between datasets must be calculated through the maximum likelihood evaluation method. Given that the optimal set of basis functions depends on such hyper-parameters, it has a significant impact on the accuracy of the KM. The PMLE method is applied to accurately calculate hyper-parameters. It was confirmed that the accuracy of a BSKM can be improved by applying it to Branin-Hoo problem.

Analysis of the Spatial Distribution of Total Phosphorus in Wetland Soils Using Geostatistics (지구통계학을 이용한 습지 토양 중 총인의 공간분포 분석)

  • Kim, Jongsung;Lee, Jungwoo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.10
    • /
    • pp.551-557
    • /
    • 2016
  • Fusing satellite images and site-specific observations have potential to improve a predictive quality of environmental properties. However, the effect of the utilization of satellite images to predict soil properties in a wetland is still poorly understood. For the reason, block kriging and regression kriging were applied to a natural wetland, Water Conservation Area-2A in Florida, to compare the accuracy improvement of continuous models predicting total phosphorus in soils. Field observations were used to develop the soil total phosphorus prediction models. Additionally, the spectral data and derived indices from Landsat ETM+, which has 30 m spatial resolution, were used as independent variables for the regression kriging model. The block kriging model showed $R^2$ of 0.59 and the regression kriging model showed $R^2$ of 0.49. Although the block kriging performed better than the regession kriging, both models showed similar spatial patterns. Moreover, regression kriging utilizing a Landsat ETM+ image facilitated to capture unique and complex landscape features of the study area.

Reliability-Based Design Optimization Using Enhanced Pearson System (개선된 피어슨 시스템을 이용한 신뢰성기반 최적설계)

  • Kim, Tae-Kyun;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.125-130
    • /
    • 2011
  • Since conventional optimization that is classified as a deterministic method does not consider the uncertainty involved in a modeling or manufacturing process, an optimum design is often determined to be on the boundaries of the feasible region of constraints. Reliability-based design optimization is a method for obtaining a solution by minimizing the objective function while satisfying the reliability constraints. This method includes an optimization process and a reliability analysis that facilitates the quantization of the uncertainties related to design variables. Moment-based reliability analysis is a method for calculating the reliability of a system on the basis of statistical moments. In general, on the basis of these statistical moments, the Pearson system estimates seven types of distributions and determines the reliability of the system. However, it is technically difficult to practically consider the Pearson Type IV distribution. In this study, we propose an enhanced Pearson Type IV distribution based on a kriging model and validate the accuracy of the enhanced Pearson Type IV distribution by comparing it with a Monte Carlo simulation. Finally, reliability-based design optimization is performed for a system with type IV distribution by using the proposed method.

Development of Subsurface Spatial Information Model System using Clustering and Geostatistics Approach (클러스터링과 지구통계학 기법을 이용한 지하공간정보 모델 생성시스템 개발)

  • Lee, Sang-Hoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.4
    • /
    • pp.64-75
    • /
    • 2008
  • Since the current database systems for managing geotechnical investigation results were limited by being described boring test result in point feature, it has been trouble for using other GIS data. Although there are some studies for spatial characteristics of subsurface modeling, it is rather lack of being interoperable with GIS, considering geotechnical engineering facts. This is reason for difficulty of practical uses. In this study, we has developed subsurface spatial information model through extracting needed geotechnical engineering data from geotechnical information DB. The developed geotechnical information clustering program(GEOCL) has made a cluster of boring formation(and formation ratio), classification of layer, and strength characteristics of subsurface. The interpolation of boring data has been achieved through zonal kriging method in the consideration of spatial distribution of created cluster. Finally, we make a subsurface spatial information model to integrate with digital elevation model, and visualize 3-dimensional model by subsurface spatial information viewing program(SSIVIEW). We expect to strengthen application capacity of developed model in subsurface interpretation and foundation design of construction works.

  • PDF