DOI QR코드

DOI QR Code

Feasibility Study of Hierarchical Kriging Model in the Design Optimization Process

계층적 크리깅 모델을 이용한 설계 최적화 기법의 유용성 검증

  • Ha, Honggeun (Department of Aerospace Engineering, Pusan National University) ;
  • Oh, Sejong (Department of Aerospace Engineering, Pusan National University) ;
  • Yee, Kwanjung (Department of Aerospace Engineering, Pusan National University)
  • Received : 2013.10.01
  • Accepted : 2013.11.27
  • Published : 2014.02.01

Abstract

On the optimization design problem using surrogate model, it requires considerable number of sampling points to construct a surrogate model which retains the accuracy. As an alternative to reduce construction cost of the surrogate model, Variable-Fidelity Modeling(VFM) technique, where correct high fidelity model based on the low fidelity surrogate model is introduced. In this study, hierarchical kriging model for variable-fidelity surrogate modeling is used and an optimization framework with multi-objective genetic algorithm(MOGA) is presented. To prove the feasibility of this framework, airfoil design optimization process is performed for the transonic region. The parameters of PARSEC are used to design variables and the optimization process is performed in case of varying number of grid and varying fidelity. The results showed that pareto front of all variable-fidelity models are similar with its single-level of fidelity model and calculation time is considerably reduced. Based on computational results, it is shown that VFM is a more efficient way and has an accuracy as high as that single-level of fidelity model optimization.

근사모델을 이용한 최적설계 문제에서는 설계변수의 수가 증가함에 따라 근사모델의 정확도를 확보하기 위한 계산 횟수가 급격히 증가한다. 이를 해결하기 위해 저정확도 모델을 바탕으로 고정확도 모델로 보정하는 Variable-Fidelity Modeling을 이용하였다. 본 논문에서 Variable-Fidelity Model로는 계층적 크리깅 모델을 이용하였으며, 다목적 유전자 알고리즘과 결합하여 최적화 프레임워크를 제안하였다. 이 방법의 유용성을 검증하기 위하여 천음속 영역에 대한 익형 최적 설계를 하였다. 설계변수로는 PARSEC의 파라메터를 이용하였으며, 서로 다른 격자수를 가지는 경우 그리고 서로 다른 정확도를 가지는 해석자를 이용한 경우에 관하여 해석을 수행하였다. 검증을 위해 단일 정확도 모델에 대한 최적화 결과와 비교하였다. 모든 경우에 관하여 파레토 라인이 유사하게 나오는 것을 확인 할 수 있었으며, 계산시간은 계층적 크리깅 모델을 이용한 Variable-Fidelity Model이 단일 정확도 모델에 비하여 훨씬 줄어들었다. 이를 바탕으로 본 논문의 방법이 단일 정확도를 가지는 모델에 대한 최적화 방법과 유사한 정확도를 가지며 더욱 효율적임을 확인 할 수 있다.

Keywords

References

  1. Gano, S. E., Renuad, J. E., and Sanders, B.,"Variable Fidelity Optimization Using a Kriging Based Scaling Function," Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, NY, Aug 30-Sep.1 , 2004
  2. Alexandrov, N. M., Lewis, R. M., Gumbert, C. R., Green, L. L., and Newman,P. A., "Optimization with Variable-Fidelity Models Applied to Wing Design," Proceedings of the 38th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 10-13, 1999
  3. Yamazaki, W and Dimitri J. M, "Derivative-Enhanced Variable Fidelity Surrogate Modeling for Aerodynamic Functions", AIAA Journal Vol. 51, No. 1 2013, pp. 126-137 https://doi.org/10.2514/1.J051633
  4. Chang, K. J, Haftka R. T, G.L Giles, P.J.Kao, "Sensitivity-based Scaling for Approximating Structural Response", Journal of Aircraft, Vol. 30, No. 2, 1993, pp. 283-288. https://doi.org/10.2514/3.48278
  5. Gano, S. E, "Simulation-Based Design Using Variable-Fidelity Optimization," Ph.D dissertation, Aerospace and Mechanical engineering Dept., University of Notre Dame, 2005.
  6. Han, Z. H., Gortz, S., Zimmermann, R., "Improving Variable-Fidelity Surrogate Modeling via Gradient-enhanced Kriging and a Generalized Hybrid Bridge Function," Aerospace Science and Technology, Vol 1, No. 6, 2012, pp. 1-13.
  7. Han, Z. H., Gortz, S., "Hierarchical Kriging Model for Variable-Fidelity Surrogate Modeling", AIAA Journal, Vol. 50, No. 9, 2012, pp. 1885-1896. https://doi.org/10.2514/1.J051354
  8. Wilke, G., "Multi-Objective Optimization in Rotor Aerodynamics using Variable Fidelity Simulations", 39th European Rotorcraft Forum ,Moscow, Sep. 3-6, 2013
  9. Forrester, A. I. J., Sobester, A., and Keane, A. J., "Multi-Fidelity Optimization via Surrogate Modeling," Proceedings of the Royal society, Vol. 463, No. 2088, 2007, pp. 3251-3269. https://doi.org/10.1098/rspa.2007.1900
  10. Sobieczky, H., "Parametric Airfoils and Wings," Recent Development of Aerodynamic Design Methodologies, Vieweg+ Teubner Verlag, 1999. pp. 71-87.
  11. Donald, R. J., Matthias, S., and William, J. W., "Efficient Global Optimization of Expensive Black-Box Function," Journal of Global Optimization, Vol. 13, 1998, pp. 455-492. https://doi.org/10.1023/A:1008306431147
  12. Matthias, S., "Computer Experiments and Global Optimization," Ph.D Dissertation, Statistic and Actuarial Science Dept., University of Waterloo, Ontario, 1997.
  13. Jeong, S, Yamamoto, K., and Obayashi, S., "Kriging-based Probabilistic Method for Constrained Multi-Objective Optimization Problem." AIAA paper 6437 (2004): 2004.
  14. Chen, X., Agarwal, R. K., "Optimization of Wind Turbine Blade Airfoils Using a Multi-Objective Genetic Algorithm," Journal of Aircraft, Vol. 50, No. 2, March-April 2013, pp. 519-527. https://doi.org/10.2514/1.C031910

Cited by

  1. Optimal Design to Improve Launch Velocity of Coilgun Launching System vol.17, pp.5, 2018, https://doi.org/10.14775/ksmpe.2018.17.5.131