• Title/Summary/Keyword: 콘크리트 인장강도

Search Result 814, Processing Time 0.028 seconds

Correlation between Mix Proportion and Mechanical Characteristics of Steel Fiber Reinforced Concrete (강섬유 보강 콘크리트의 배합비와 역학적 특성 사이의 관계 추정)

  • Choi, Hyun-Ki;Bae, Baek-Il;Koo, Hae-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.331-341
    • /
    • 2015
  • The main purpose of this study is reducing the cost and effort for characterization of tensile strength of fiber reinforced concrete, in order to use in structural design. For this purpose, in this study, test for fiber reinforced concrete was carried out. Because fiber reinforced concrete is consisted of diverse material, it is hard to define the correlation between mix proportions and strength. Therefore, compressive strength test and tensile strength test were carried out for the range of smaller than 100 MPa of compressive strength and 0.25~1% of steel fiber volume fraction. as a results of test, two types of tensile strength were highly affected by compressive strength of concrete. However, increase rate of tensile strength was decreased with increase of compressive strength. Increase rate of tensile strength was decreased with increase of fiber volume fraction. Database was constructed using previous research data. Because estimation equations for tensile strength of fiber reinforced concrete should be multiple variable function, linear regression is hard to apply. Therefore, in this study, we decided to use the ANN(Artificial Neural Network). ANN was constructed using multiple layer perceptron architecture. Sigmoid function was used as transfer function and back propagation training method was used. As a results of prediction using artificial neural network, predicted values of test data and previous research which was randomly selected were well agreed with each other. And the main effective parameters are water-cement ratio and fiber volume fraction.

A Proposal of Tensile Strength Prediction Models Considering Unit Weight of Concrete (콘크리트의 기건 단위질량을 고려한 인장강도 예측모델 제안)

  • Sim, Jae Il;Yang, Keun Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.107-115
    • /
    • 2012
  • The present study evaluates the validity of different equations specified in code provisions and proposed by the existing researchers to predict the concrete tensile capacities (direct tensile strength, splitting tensile strength and modulus of rupture) using a comprehensible database including 361 lightweight concrete (LWC), 1,335 normal-weight concrete (NWC) and 221 heavy-weight concrete (HWC) specimens. Most of the equations express the concrete tensile strengths as a function of its compressive strength based on the limited NWC concrete test data. However, the present database shows that the concrete tensile capacities are significantly affected by its unit weight as well. As a result, the inconsistency between experiments and predictions by the different models increases when the concrete unit weight is below 2,100 kg/$m^3$ and concrete compressive strength is above 50 MPa. On the other hand, new models proposed by the present study considering the concrete unit weight predict the tensile strengths of concrete with more accuracy.

An Experimental Study on Flexural Tensile Strength and Bond Strength Between Concrete-to-Concrete (콘크리트의 휨인장강도 및 신·구콘크리트 사이의 부착강도에 관한 실험 연구)

  • Yang, In-Hwan;Yoo, Sung-Won;Seo, Jung-In
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.155-163
    • /
    • 2009
  • The purpose of this paper is to investigate the bond strength between old and new concrete as well as flexural tensile strength of concrete. To achieve this purpose, a comprehensive experimental program has been set up and strength tests using a series of specimens have been carried out. The present study represents that the flexural bond strength between old and new concrete is much smaller than that of flexural tensile strength. The ratio of bond strength to flexural tensile strength ranged through 15~27%. It is seen that concrete-to-concrete bond strength has been affected by curing condition. Also, test results of tensile strength show that recommendation by ACI 363 committee is estimated to be more realistic than another recommendations for predicting tensile strength of concrete.

Tension Stiffening Effect and Crack Behavior of Tension Members Using High Strength Concrete (고강도 콘크리트 인장부재의 인장강화효과와 균열거동)

  • Kim, Jee-Sang;Park, Chan Hyuk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.50-58
    • /
    • 2018
  • The verification of serviceability of concrete structures requires more informations on the composite behaviors between concrete and reinforcement. Among them, the investigation of crack widths and spacings is based on the tension stiffening effects. In this paper, the tension stiffening effects of high strength concrete members with compressive strength of 80 and 100MPa are investigated experimentally. It was found that the current design code which is based on the tests of normal strength concrete may not describe the tension stiffening effects in high strength concrete correctly. The coefficient that can appropriately reflect the tension stiffening effects in the high strength concrete was proposed. Also, the crack spacing was investigated through the cracking behaviors and the crack width according to the difference of the strains in steel and concrete was estimated. The results of this paper may be used to examine the tension stiffening effects of high strength concrete members.

Tension-Stiffening Model and Application of Ultra High Strength Fiber Reinforced Concrete (초고강도 강섬유보강 철근콘크리트의 인장강화 모델 및 적용)

  • Kwak, Hyo-Gyoung;Na, Chaekuk;Kim, Sung-Wook;Kang, Sutae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.267-279
    • /
    • 2009
  • A numerical model that can simulate the nonlinear behavior of ultra high strength fiber reinforced concrete (UHSFRC) structures subjected to monotonic loading is introduced. The material properties of UHSFRC, such as compressive and tensile strength or elastic modulus, are different from normal strength reinforced concrete. The uniaxial compressive stress-strain relationship of UHSFRC is designed on the basis of experimental result, and the equivalent uniaxial stress-strain relationship is introduced for proper estimation of UHSFRC structures. The steel is uniformly distributed over the concrete matrix with particular orientation angle. In advance, this paper introduces a numerical model that can simulate the tension-stiffening behavior of tension part of the axial member on the basis of the bond-slip relationship. The reaction of steel fiber is considered for the numerical model after cracks of the concrete matrix with steel fibers are formed. Finally, the introduced numerical model is validated by comparison with test results for idealized UHSFRC beams.

A Study on the Strength, Toughness and Crack Control Characteristics of Polypropylene Fiber Reinforced Concrete (폴리프로필렌 합성섬유보강 콘크리트의 강도, 인성 및 균열제어 특성 연구)

  • 오병환;한승환;차수원;백상현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.305-310
    • /
    • 1995
  • 토목 및 건축재료로서 폴리프로필렌 섬유 모르타르 및 콘크리트의 사용은 미국, 영 국 등지에서 개발되기 시작하여 많은 연구가 진행되어 왔는데, 가격이 저렴하고, 화학적인 안정성과 내구성이 우수하여 그 사용이 점차 증대되고 있는 실정이다. 이러한 폴리프로필렌 섬유의 사용은 모르타르 및 콘크리트가 건조나 냉각에 의해 수축될 때 구속에 의해 발생하 는 인장응력 및 균연을 제어하고, 인성의 증가와 충격, 마모, 피로에 대한 저항성, 내구성을 증대시키는 등의 장점을 가지는 것으로 보고되고 있다. 본 연구에서는 이러한 폴리프로필렌 섬유 모르타르 및 콘크리트의 역학적 거동특성인 압축강도, 인장강도, 인성, 유동성과 균열 특성을 실험적으로 규명하고자 하였다. 실험결과 폴리프로필렌의 혼입량이 증가할수록 압축 강도, 인장강도, 인성의 증가를 보였으나, 혼입향 0.2%를 초과할 경우 유동성, 강도 모두 감 소하는 것을 볼 수 있었다. 그리고 단섬유형 보다는 메쉬 형태의 폴리프로필렌 섬유가 역학 적 특성면에서 우수한 것으로 관찰되었으며, Kraai 방법에 의한 소성수축균열제어 특성 실 험에서 약 45% 이상으 균열감소 (0.1%혼입) 효과를 볼 수 있었다.

  • PDF

Bond Characteristics of High-Strength Concrete (고장도 콘크리트의 부착특성에 관한 연구)

  • Lee, Joon-Gu;Mun, In;Yum, Hwan-Seok;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.499-506
    • /
    • 2001
  • Eight direct tension tests were conducted to study the bond characteristics and crack behavior in high-strength concrete axial members. The main variable was the concrete strength up to 61-63 MPa. The specimens consisted of two different types of the short specimens modeled the part between transverse cracks and the long specimens having numerous transverse cracks. The results obtained show that the bond strength increases in proportion to compressive strength. Thereby, in high-strength concrete the length of stress-disturbed region is shortened and the space of adjacent transverse cracks become smaller. Although the concrete strength varies from 25 MPa to 61 MPa, the split cracking loads remain constant, while transverse cracking loads vary as variation of concrete tensile strength. Accordingly, the current code provisions for development length may need reconsideration in high-strength concrete members, and it is recommended that either thicker cover or transverse reinforcement should be additionally provided for high-strength concrete members.

Correlation Between Tensile Strength and Compressive Strength of Ultra High Strength Concrete Reinforced with Steel Fiber (초고강도 강섬유 보강 콘크리트의 인장강도와 압축강도 사이의 상관관계에 관한 연구)

  • Bae, Baek-Il;Choi, Hyun-Ki;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.253-263
    • /
    • 2015
  • Ultra-high strength concrete which have 100 MPa compressive strength or higher can be developed applying RPC(Reactive Powder Concrete). Preventing brittle failure under compression and tension, ultra-high strength concrete usually use the steel fibers as reinforcements. For the effective use of steel fiber reinforced ultra-high strength concrete, estimation of tensile strength is very important. However, there are insufficient research results are available with no relation between them. Therefore, in this study, correlation between compressive strength and tensile strength of ultra-high strength concrete was investigated by test and statistical analysis. According to test results, increasing tendency of tensile strength was also shown in the range of ultra-high strength. Evaluation of test results of this study and collected test results were carried out. Using 284 splitting test specimens and 265 flexural test specimens, equations suggested by previous researchers cannot be applied to ultra-high strength concrete. Therefore, using database and test results, regression analysis was carried out and we suggested new equation for splitting and flexural tensile strength of steel fiber reinforced ultra-high strength concrete.

Strength and Mechanical Characteristics of Fiber-Reinforced Polymer Concrete (섬유보강 폴리머 콘크리트의 강도 및 역학적 특성)

  • 오병환
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.3
    • /
    • pp.147-155
    • /
    • 1992
  • 최근들어 성능이 우수하고 품질이 높은 새로운 건설소재를 개발하려는 노력이 계속되고 있다. 본 논문에서는 고강도화 및 연성확보를 위하여 폴리머 콘크리트에 섬유를 혼입한 섬유보강 폴리머 콘크리트를 제조하여 강도 및 역학적 특성을 규명하고자 하였다. 이를 위하여 포괄적인 실험연구를 수행하였으며 주요실험변수로는 강섬유의 혼입량과 채움재(filler)의 혼입량, 그리고 양생온도를 주요변수로 선정하였다. 강섬유의 혼입량은 체적비로 0%, 1%, 2%로 변화시켰으며, 채움재와 수지의 비는 1.0과 1.5로 하였다. 본 연구결과 섬유의 혼입으로 인하여 압축강도, 휨강도, 인장강도 모두 증가하였으며, 특히 인장강도의 증가가 더 크게 나타났다. 양생온도가 증가한 경우 폴리머의 중합반응이 좋아져 강도가 증가하였다. 또한 본 논문에서는 섬유보강 폴리머 콘크리트의 응력-변형도 관계곡선을 도축하였으며, 이것은 구조설계시 중요한 기초가 될 것으로 사료된다.

Tensile Behavior of Ultra-High Performance Concrete According to Combination of Fibers (섬유 조합에 따른 초고성능 콘크리트의 인장거동)

  • Choi, Jung-Il;Koh, Kyung-Taek;Lee, Bang-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.49-56
    • /
    • 2015
  • Ultra-High Strength Concrete(UHPC) has ultra-high material performance including high strength and high flowability. On the other hand it is less ductile than high ductile fiber reinforced cementitious composite. This study investigated the effect of combination of steel fiber and micro fiber on the tensile behavior of UHPC. Four types of UHPC containing combination of steel fiber, polyethylene(PE), polyvinyl alcohol(PVA), and basalt fiber were designed. And then uniaxial tension tests were performed to evaluate the tensile behavior of UHPC according to combination of fibers. And density was measured to evaluate whether micro fiber induces unintentional high pore or not. From the test results, it was exhibited that PE fiber with high strength is effective to improve the tensile behavior of UHPC and basalt fiber is effective to increase the cracking and tensile strength of UHPC. Furthermore, it was also verified that micro fiber does not make high pore.