DOI QR코드

DOI QR Code

Tension-Stiffening Model and Application of Ultra High Strength Fiber Reinforced Concrete

초고강도 강섬유보강 철근콘크리트의 인장강화 모델 및 적용

  • 곽효경 (한국과학기술원 건설 및 환경공학과) ;
  • 나채국 (한국과학기술원 건설 및 환경공학과) ;
  • 김성욱 (한국건설기술연구원) ;
  • 강수태 (한국건설기술연구원)
  • Received : 2008.03.17
  • Accepted : 2009.01.14
  • Published : 2009.07.31

Abstract

A numerical model that can simulate the nonlinear behavior of ultra high strength fiber reinforced concrete (UHSFRC) structures subjected to monotonic loading is introduced. The material properties of UHSFRC, such as compressive and tensile strength or elastic modulus, are different from normal strength reinforced concrete. The uniaxial compressive stress-strain relationship of UHSFRC is designed on the basis of experimental result, and the equivalent uniaxial stress-strain relationship is introduced for proper estimation of UHSFRC structures. The steel is uniformly distributed over the concrete matrix with particular orientation angle. In advance, this paper introduces a numerical model that can simulate the tension-stiffening behavior of tension part of the axial member on the basis of the bond-slip relationship. The reaction of steel fiber is considered for the numerical model after cracks of the concrete matrix with steel fibers are formed. Finally, the introduced numerical model is validated by comparison with test results for idealized UHSFRC beams.

이 논문에서는 초고강도 강섬유보강 철근콘크리트 구조물의 단조증가 하중에서 비선형 해석모델을 소개하고 있다. 일반콘크리트에 비해 압축강도와 인장강도가 증가한 초고강도 강섬유보강 콘크리트는 그 거동이 일반콘크리트와 다른 특성을 가지고 있다. 초고강도 강섬유보강 철근콘크리트 구조물에 대한 비선형 해석을 하기에 앞서 실험결과를 이용하여 압축영역에서 응력-변형률, 관계를 회귀분석을 통하여 유추하였고, 초고강도 강섬유보강 철근콘크리트 구조물 거동의 정확한 예측을 위하여 등가일축 응력-변형률 관계를 이용하였다. 또한 균열의 진전에 따른 균열각을 모사하기 위해 평면응력 요소를 이용하였고, 분산철근모델을 이용하여 해석에 적용하였다. 한편, 초고강도 강섬유보강 철근콘크리트의 인장영역에서 응력-변형률 관계를 정의하기 위해 철근과 콘크리트의 부착응력-부착슬립 관계와 강섬유의 영향 등을 고려한 새로운 인장강화 모델을 제안하고 있다. 끝으로 제안된 알고리즘과 응력-변형률 관계 및 인장강화 모델을 한국건설기술연구원에서 실험한 초고강도 강섬유보강 철근콘크리트 부재에 대한 수치해석을 수행하여 실험결과와 비교, 평가하였다.

Keywords

References

  1. 곽효경(1994) 철근 및 프리스트레스 콘크리트 구조물의 비선형 유한요소 해석, 대한토목학회논문집, 대한토목학회, 제14권 제2호, pp. 269-279.
  2. 곽효경, 김재홍, 김도연(2005) PSC 구조물의 유한요소해석을 위한 긴장재 모델 개발, 대한토목학회논문집, 대한토목학회, 제25권 제1호, pp. 1-9.
  3. 곽효경, 나채국(2007) 부착슬립을 고려한 철근콘크리트 구조체의 비선형 거동 해석, 대한토목학회논문집, 대한토목학회, 제27권 제3A호, pp. 401-412.
  4. 김도연(2004) 철근콘크리트 전단벽의 균열 및 이력 거동해석, 박사학위논문, 한국과학기술원.
  5. 류금성, 박정준, 강수태, 고경택, 김성욱(2005) 초고강도 강섬유보강 콘크리트의 휨특성에 관한 연구, 한국콘크리트학회 학술발표회 논문집, 한국콘크리트학회, pp. 333-336.
  6. 이방연(2008) 이미지 프로세싱 기반 섬유 분포 특성 평가 및 섬유 분포 특성이 시멘트 복합체의 인장거동에 미치는 영향, 박사학위논문, 한국과학기술원.
  7. 장일영, 이호범, 변근주(1992) 초고강도 콘크리트의 재료특성 및 휨 거동에 관한 실험적 연구, 한국콘크리트학회논문집, 한국콘크리트학회, 제4권 제2호, pp. 1018-1415.
  8. 한국건설기술연구원(2005) 초고성능 시멘트 복합재료를 활용한 교량 거더 개발, 건설핵심기술연구개발사업 최종보고서, 한국건설교통기술평가원.
  9. ACI Committee 363 (1997) State-of-the-Art Report on High Strength Concrete, ACI, Detroit, Michigan.
  10. Attard, M.M. and Setunge, S. (1996) Stress-strain relationship of confined and unconfined concrete, ACI Materials Journal, ACI, Vol. 93, No. 5, pp. 1-11.
  11. Barros, J.A.O. and Figueiras, J.A. (1999) Flexural behavior of SFRC: testing and modeling, Journal of Materials in Civil Engineering, ASCE, Vol. 11, No. 4, pp. 331-339. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:4(331)
  12. Bencardino F., Rizzuti L., Spadea G., and Swamy R.N. (2008) Stress-strain behavior of steel fiber-reinforced concrete in compression, Journal of Materials in Civil Engineering, ASCE, Vol. 20, No. 3, pp. 255-263. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:3(255)
  13. Bischoff, P.H. (2003) Tension stiffening and cracking of steel fiber-reinforced concrete, Journal of Materials in Civil Engineering, ASCE, Vol. 15, No. 2, pp. 174-182. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:2(174)
  14. Chen, W.F. (1982) Plasticity in Reinforced Concrete, McGraw-Hill, New York.
  15. Collins, M.P. and Mitchell, D. (1991) Prestressed Concrete Structures, Prentice hall, Englewood Cliffs, NJ.
  16. CEB (1990) High Strength Concrete, State-of-the-Art Report, CEB Bulletin d'Information No. 197, Thomas Telford, Lausanne, Switzerland.
  17. CEB (1993) CEB-FIP Model Code 1990: Design Code, CEB Bulletin d'Information No. 213/214, Thomas Telford, Lausanne, Switzerland.
  18. CEB (1995) High Performance Concrete, Recommended Extensions to the Model Code 90, Research Needs, CEB Bulletin d'Information No.228, Thomas Telford, Lausanne, Switzerland.
  19. Dahl, K.K.B. (1992) A constitutive model for normal and high-strength concrete, ABK Report No R287, Department of Structural Engineering, Technical University of Denmark, Denmark.
  20. Demeke, A. and Tegos, I.A. (1994) Steel fiber reinforced concrete in biaxial stress tension-compression conditions, ACI Structural Journal, ACI, Vol. 91, No. 5, pp. 579-584.
  21. Ezeldin, A.S. and Balaguru, P.N. (1992) Normal- and high-strength fiber reinforced concrete under compression, Journal of Materials in Civil Engineering, ASCE, Vol. 4, No. 4, pp. 415-429. https://doi.org/10.1061/(ASCE)0899-1561(1992)4:4(415)
  22. Graybeal, B.A. (2007) Compressive behavior of ultra-high-performance fiber-reinforced concrete, ACI Materials Journal, ACI, Vol. 104, No. 2, pp. 146-152.
  23. Gupta, A.K. and Maestrini, S.R. (1990) Tension-stiffness model for reinforced concrete bars, Journal of Structural Engineering, ASCE, Vol. 116, No. 3, pp. 769-790. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:3(769)
  24. Hognestad, E. (1951) A Study on Combined Bending and Axial Load in Reinforced Concrete Members, Bulletin Series No. 399, Engineering Experiment Station, University of Illinois, Illinois.
  25. Hu, X.D., Day, R., and Dux, P. (2003) Biaxial failure model for fiber reinforced concrete, Journal of Materials in Civil Engineering, ASCE, Vol. 15, No, 6, pp. 609-615. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:6(609)
  26. Hussein, A. and Marzouk, H. (2000) Behavior of high-strength concrete under biaxial stresses, ACI Materials Journal, ACI, Vol. 97, No. 1, pp. 27-36.
  27. Jungwirth, J. and Muttoni, A. (2004) Structural behavior of tension members in UHPC, Proceeding of International Symposium on UHPC.
  28. Kolle, B., Phillips, D.V., Zhang, B., Bhatt, B. and Pearce, C.J. (2004) Experimental investigation of the biaxial properties of high performance steel fibre reinforced concrete, Proceeding of 6th RILEM Symposium on Fibre-Reinforced Concrete (FRC)-BEFIB 2004, RILEM, Varenna, Italy, pp. 369-378.
  29. Kupfer, H., Hilsdorf, H.K., and Rusch, H. (1969) Behavior of concrete under biaxial stresses, ACI Journal, ACI, Vol. 66, No. 8, pp. 656-666.
  30. Kwak, H.G. and Kim, D.Y. (2004) Material nonlinear analysis of RC shear walls subjected to monotonic loading, Engineering Structures, Elsevier, Vol. 26, No. 11, pp. 1517-1533. https://doi.org/10.1016/j.engstruct.2004.05.013
  31. Kwak, H.G. and Kim, J.K. (2006) Implementation of bond-slip effect in analyses of RC frames under cyclic loads using layered section method, Engineering Structures, Elsevier, Vol. 28, No. 12, pp. 1715-1727. https://doi.org/10.1016/j.engstruct.2006.03.003
  32. Lim, D.H. and Nawy, E.G. (2005) Behavior of plain and steel-fibre-reinforced high-strength concrete under uniaxial and biaxial compression, Magazine of Concrete Research, Thomas Telford, Vol. 57, No. 10, pp. 603-610. https://doi.org/10.1680/macr.2005.57.10.603
  33. Liu, T.C.Y., Nilson, A.H., and Floyd F.O.S. (1972) Stress-strain response and fracture of concrete in uniaxial and biaxial compression, ACI Journal, ACI, Vol. 69, No. 5, pp. 291-295.
  34. Lorrain, M., Maurel, O. and Seffo, M. (1998) Cracking behavior of reinforced high-strength concrete tension ties, ACI Structural Journal, ACI, Vol. 95, No. 5, pp. 626-635.
  35. Maekawa, K., Pimanmas, A., and Okamura, H. (2003) Nonlinear Mechanics of Reinforced Concrete, Spon Press, London, UK.
  36. Mansur, M.A., Chin M.S., and Wee T.H. (1999) Stress-strain relationship of high-strength fiber concrete in compression, Journal of Materials in Civil Engineering, ASCE, Vol. 11, No. 1, pp. 21-29. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:1(21)
  37. Rizkalla, S.H. and Hwang, L.S. (1984) Crack prediction for members in uniaxial tension, ACI Journal, ACI, Vol. 81, No. 6, pp. 572-579.
  38. Salem, H. and Maekawa, K. (1999) Spatially averaged tensile mechanics for cracked concrete and reinforcement in highly inelastic range, Proceeding of JSCE, JSCE, Japan, pp. 277-293.
  39. SETRA-Association Francaise de Genie Civil (2002) Bentons Fibres a Ultra-Hautes Peformances, Recommandations Provisoires, Documents Scientifiques et Techniques, France.
  40. Vecchio, F.J. and Collins, M.P. (1986) The modified compression-field theory for reinforced concrete elements subjected to shear, ACI Journal, ACI, Vol. 83, No. 2, pp. 219-231.
  41. Wee, T.H., Chin, M.S., and Mansur, M.A. (1996) Stress-strain relationship of high-strength concrete in compression, Journal of Materials in Civil Engineering, ASCE, Vol. 8, No. 2, pp. 70-76. https://doi.org/10.1061/(ASCE)0899-1561(1996)8:2(70)