DOI QR코드

DOI QR Code

Correlation Between Tensile Strength and Compressive Strength of Ultra High Strength Concrete Reinforced with Steel Fiber

초고강도 강섬유 보강 콘크리트의 인장강도와 압축강도 사이의 상관관계에 관한 연구

  • Bae, Baek-Il (Research Institute of Industrial, Hanyang University) ;
  • Choi, Hyun-Ki (Dept. of Fire and Disaster Prevention Engineering, KyungNam University) ;
  • Choi, Chang-Sik (Dept. of Architectural Engineering, Hanyang University)
  • 배백일 (한양대학교 산업과학연구소) ;
  • 최현기 (경남대학교 소방방재공학과) ;
  • 최창식 (한양대학교 건축공학부)
  • Received : 2014.11.04
  • Accepted : 2015.01.14
  • Published : 2015.06.30

Abstract

Ultra-high strength concrete which have 100 MPa compressive strength or higher can be developed applying RPC(Reactive Powder Concrete). Preventing brittle failure under compression and tension, ultra-high strength concrete usually use the steel fibers as reinforcements. For the effective use of steel fiber reinforced ultra-high strength concrete, estimation of tensile strength is very important. However, there are insufficient research results are available with no relation between them. Therefore, in this study, correlation between compressive strength and tensile strength of ultra-high strength concrete was investigated by test and statistical analysis. According to test results, increasing tendency of tensile strength was also shown in the range of ultra-high strength. Evaluation of test results of this study and collected test results were carried out. Using 284 splitting test specimens and 265 flexural test specimens, equations suggested by previous researchers cannot be applied to ultra-high strength concrete. Therefore, using database and test results, regression analysis was carried out and we suggested new equation for splitting and flexural tensile strength of steel fiber reinforced ultra-high strength concrete.

최근 RPC를 활용한 초고강도 콘크리트가 개발되면서 100 MPa 이상의 높은 압축강도를 보유한 콘크리트가 취성적 파괴의 방지 목적과 인장강도 증진을 위해 강섬유를 혼입하여 사용되고 있다. 따라서 인장강도의 결정이 중요하나, 현재 초고강도 콘크리트 영역에서의 인장강도 추정을 위한 연구결과가 산발적으로만 이루어지고 있는 상황이다. 따라서 본 연구에서는 80~200 MPa의 압축강도를 보유한 RPC의 재료 시험을 수행하여 압축강도와 인장강도의 상관관계를 검토하였다. 시험 결과 100 MPa 이상의 압축강도를 보유할 경우에도 보통강도 또는 고강도 콘크리트 영역에서의 변화 경향이 유지되고 있는 것을 확인할 수 있었다. 이에 기존 연구로부터 수집된, 쪼갬인장강도 원주형 공시체 시험 결과 284개와 265개의 파괴계수 시험 결과를 활용하여 기존의 추정식들을 평가하였다. 평가 결과 100 MPa 이상의 초고강도 콘크리트에서는 기존 추정식을 안전하게 사용하기 어려운 것을 확인하였으며, 100 MPa 이상의 초고강도 콘크리트에도 적용 가능한 회기식을 도출하였다.

Keywords

References

  1. Korea Concrete Institute, Concrete Design Code and Commentary, Kimoondang Publishing Company, Seoul, Korea, 2012, pp. 600.
  2. KS F 2423, Standard test method for splitting strength of concrete, Korean Agency for Technology and Standards, 2011, pp. 1-12.
  3. KS F 2408, Standard test method for flexural strength of concrete, Korean Agency for Technology and Standards, 2010, pp. 1-9.
  4. ACI 363. Report on high strength concrete. Report ACI 363R-10, Farmington Hills, MI, American Concrete Institute, 2010, pp. 1-65.
  5. Carrasquillo, R. L., Nilson, A. H. and Slate, F. O., "Properties of high strength concrete subjected to short-term load", ACI Journal, Vol.78, No.2, 1981, pp. 171-178.
  6. Mokhtarzadeh, A. and French, C. "Mechanical Properties of High-Strength Concrete with Consideration for Precast Applications", ACI Materials Journal, Vol.97, No.2, Mar. -Apr., 2000, pp. 136-148.
  7. Nihal Arioglu, Z. Canan Girgin, and Ergin Arioglu, "Evaluation of Ratio between Splitting Tensile Strength and Compressive Strength for Concretes up to 120 MPa and its Application in Strength Criterion", ACI Materials Journal, Vol.103, No.1, Jan.-Feb., 2006, pp. 18-24.
  8. Zaina, M. F. M., Mahmudb, H. B. and Faizala, Ade Ilhama, M., "Prediction of splitting tensile strength of high-performance concrete", Cement and Concrete Research, Vol.32, 2002, pp. 1251-1258. https://doi.org/10.1016/S0008-8846(02)00768-8
  9. Francis Oluokun, "Prediction of Concrete Tensile Strength from its Compressive Strength: an Evaluation of Existing Relations for Normal Weight Concrete", ACI Materials Journal, Vol.88, No.3, May.-Jun. 1991, pp. 302-309.
  10. Ahmad, S. H. and Saha, S. P., "Structural properties of high strength concrete and its applications for precast prestressed concrete", PCI Journal, Vol.30, No.6, 1985, pp. 97-123.
  11. ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary, American Concrete Institute, Farmington Hills, Mich., 2011, pp. 391.
  12. NZS3101, NZS 3101:2006, Concrete Structures Standard, Standards New Zealand, Wellington, pp. 232.
  13. Burg, R. G. and Ost, B. W., "Engineering Properties of Commercially Available High-Strength Concretes", RD 104-DIT, Portland Cement Association, 1992, pp. 55.
  14. Khayat, K., Bickley, J. and Hooton, R. D., "High-strength concrete properties derived from compressive strength values", Cement Concrete and Aggregates, Vol.17, No.2, December, 1995, pp. 126-133. https://doi.org/10.1520/CCA10138J
  15. Narayanan, R. and Darwish, I. Y. S., "Use of Steel Fibers as Shear Reinforcement", ACI Structural Journal, Vol.84, No.3, 1987, pp. 216-227.
  16. Faisal, F. Wafa and Samir A. Ashour, "Mechanical Properties of High-Strength Fiber Reinforced Concrete", ACI Material Journal, Vol.89, No.48, 1992, pp. 449-455.
  17. Song, P. S. and Hwang, S., "Mechanical properties of high-strength steel fiber-reinforced concrete", Construction and Building Materials, Vol.18, 2004, pp. 669-673. https://doi.org/10.1016/j.conbuildmat.2004.04.027
  18. Job Thomas and Ananth Ramaswamy, "Mechanical Properties of Steel Fiber-Reinforced Concrete", Journal of Materials in Civil Engineering, Vol.19, No.5, May, 2007. pp. 385-392. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:5(385)
  19. Ramadoss, P. and Nagamani, K., "Tensile Strength and Durability Characteristics of High-Performance Fiber Reinforced Concrete", The Arabian Journal for Science and Engineering, Vol.33, No.2B, 2008, pp. 307-319.
  20. Antoine, E. Naaman, "Engineered Steel Fibers with Optimal Properties for Reinforcement of Cement Composites", Journal of Advanced Concrete Technology, Vol.1, No.3, November 2003, pp. 241-252. https://doi.org/10.3151/jact.1.241
  21. KS F 2405, Standard Test Method for Compressive Strength of Concrete, Korean Agency for Technology and Standards, 2010. pp. 1-16.
  22. Gettu, R., Gardner, D. R., Saldivar, H. and Barragfin, B. E., "Study of the distribution and orientation of fibers in SFRC specimens", Materials and Structures 38, 2005, pp. 31-37. https://doi.org/10.1007/BF02480572
  23. M. Daniel Vanderbilt, Shear strength of continuous plates, Journal of the Structural division, Proceedings of the ASCE, May, 1972, pp. 961-973.
  24. Kaiss F. Sarsam, Ihsan A.S. Al-Shaarbaf, Maha M. S. Ridha, "Experimental Investigation of Shear-Critical Reactive Powder Concrete Beams withoutWeb Reinforcement", Eng.&Tech. Journal, Vol.30, No.17, 2012, pp. 2999-3022.
  25. J. A. Ramirez, Gerardo Aguilar, Shear Reinforcement Requirements for High-Strength Concrete Bridge Girders, Joint Transportation Research Project, Project No. C-36-56III, Purdue University, 2005, pp. 127.
  26. Dawood Abdulhai Pandor, Behavior of High Strength Fiber Reinforced Concrete Beams in shear, Thesis of Master of Science, Massachusetts institute of technology, Feb, 1994, pp. 124.
  27. Job Thomas and Ananth Ramaswamy, "Mechanical Properties of Steel Fiber-Reinforced Concrete", Journal of Materials in Civil Engineering, Vol.19, No.5, May 1, 2007, pp. 385-392. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:5(385)
  28. Yen Lei Voo, Wai Keat Poon and Stephen J. Foster, Shear Strength of Steel Fiber-Reinforced Ultrahigh-Performance Concrete Beams without Stirrups, Journal of Structural Engineering, Vol.136, No.11, November 1, 2010, pp. 1393-1400. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000234
  29. By M. A. Mansur, M. ASCE, K. C. G. Ong, and P. Paramasivam, "Shear Strength of Fibrous Concrete Beams Without Stirrups", Journal of Structural Engineering, Vol.112, No.9, September, 1986. pp. 2066-2079. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:9(2066)
  30. Narayanan, R. and Darwish, 1. Y. S., "Use of Steel Fibers as Shear Reinforcement", ACI Structural Journal, Vol.84, No. 3, May-June, 1987, pp. 216-227.
  31. Oh, Y. H., "Evaluation of Flexural Strength for Normal and High Strength Concrete with Hooked Steel Fibers", Journal of the Korea Concrete Institute, Vol.20, No.4, August, 2008, pp. 531-539. https://doi.org/10.4334/JKCI.2008.20.4.531
  32. Kwak, Y. K., Eberhard, M. O., Kim, W. S. and Kim, J., "Shear Strength of Steel Fiber-Reinforced Concrete Beams without Stirrups", ACI Structural Journal, Vol.99, No.4, July-August 2002, pp. 530-538.
  33. Mansur, M. A. and Paramasivam, P., "Steel fibre reinforced concrete beams in pure torsion", The International Journal of Cement Composites and Lightweight Concrete, Vol.4, No.1, 1982, pp. 39-45. https://doi.org/10.1016/0262-5075(82)90006-9
  34. Shende, A. M., Pande, A. M. and Gulfam Pathan, M., "Experimental Study on Steel Fiber Reinforced Concrete for M-40 Grade", International Refereed Journal of Engineering and Science, Vol.1, No.1, 2012, pp. 43-48.
  35. van Jijl, G. P. A. G. and Zeranka, S., The impact of Rheology on the mechanical performance of steel fiber reinforced concrete, HPFRCC 6, 2012, pp. 59-66.
  36. Nguyen Minh Long, Rovnak Marian, Investigation of Fracture Properties of Steel Fiber Reinforced Concrete, The 3rd ACF International Conference - ACF/VCA 2008, pp. 854-861.
  37. Avraham N. Dancygier, Amnon Katz, Uri Wexler, Bond between deformed reinforcement and normal and high-strength concrete with and without fibers, Materials and Structures Vol.43, 2010, pp. 839-856. https://doi.org/10.1617/s11527-009-9551-6
  38. Ramadoss, P., "Modeling for the evaluation of strength and toughness of high performance fiber reinforced concrete", Journal of Engineering Science and Technology, Taylor's University, Vol.7, No.3, 2012, pp. 280-291.
  39. Hisham M. Al-Hassani, Wasan Ismail Khalil and Lubna S. Danha, "Mechanical Properties of Reactive Powder Concrete (RPC) with Various Steel Fiber and Silica Fume Contents", Eng. & Tech. Journal, Vol.31, Part (A), No.16, 2013, pp. 3090-3108.
  40. Wasan, I. Khalil and Tayfur, Y. R., "Flexural Strength of Fibrous Ultra High Performance Reinforced Concrete Beams", ARPN Journal of Engineering and Applied Sciences, Vol.8, No.3, MARCH 2013, pp. 200-214.
  41. Celik Ozyildirim, Evaluation of Ultra-High-Performance Fiber-Reinforced Concrete, Virginia Center for Transportation Innovation and Research, FHWA/VCTIR 12-R1, 2011, pp. 20.
  42. A. Ramachandra Murthy, Nagesh R. Iyer and B.K. Raghu Prasad, Evaluation of mechanical properties for high strength and ultrahigh strength concretes, Advances in Concrete Construction, Vol.1, No.4, 2013, pp. 341-358. https://doi.org/10.12989/acc2013.1.4.341
  43. Benjamin A. Graybeal, Material Property Characterization of Ultra-High Performance Concrete, Office of Infrastructure Research and Development, Federal Highway Administration, FHWA-HRT-06-103, 2006, pp. 176.
  44. Nageh, N., Meleka, Alaa A., Bashandy, Mohamed A. Arab, "Ultra High Strength Concrete Using Economical Materials", International Journal of Current Engineering and Technology, Vol.3, No.2, June 2013, pp. 393-402.
  45. Magureanu, C., Sosa, I., Negrutiu, C. and Heghes, B., Physical and mechanical properties of ultra high strength fiber reinforced cementitious composites, Proceedings of FraMCoS-7, May, 2010, pp. 23-28.
  46. Arunachalam. K. and Vigneshwari, M., "Experimental investigation on ultra high strength concrete containing mineral admixtures under different curing conditions", International Journal of Civil and Structural Engineering, Vol.2, No.1, 2011, pp. 33-42.
  47. Maher, K., Tadros, George Morcous, Application of Ultra-High Performance Concrete to Bridge Girders, University of Nebraska-Lincoln, SPR-P1(08)P310, 2009, pp. 76.

Cited by

  1. Evaluating the Effects of Steel Fibers on Mechanical Properties of Ultra-High Performance Concrete Using Artificial Neural Networks vol.8, pp.7, 2018, https://doi.org/10.3390/app8071120