Browse > Article
http://dx.doi.org/10.11112/jksmi.2012.16.4.107

A Proposal of Tensile Strength Prediction Models Considering Unit Weight of Concrete  

Sim, Jae Il (경기대학교 건축공학과)
Yang, Keun Hyeok (경기대학교 플랜트건축공학과)
Publication Information
Journal of the Korea institute for structural maintenance and inspection / v.16, no.4, 2012 , pp. 107-115 More about this Journal
Abstract
The present study evaluates the validity of different equations specified in code provisions and proposed by the existing researchers to predict the concrete tensile capacities (direct tensile strength, splitting tensile strength and modulus of rupture) using a comprehensible database including 361 lightweight concrete (LWC), 1,335 normal-weight concrete (NWC) and 221 heavy-weight concrete (HWC) specimens. Most of the equations express the concrete tensile strengths as a function of its compressive strength based on the limited NWC concrete test data. However, the present database shows that the concrete tensile capacities are significantly affected by its unit weight as well. As a result, the inconsistency between experiments and predictions by the different models increases when the concrete unit weight is below 2,100 kg/$m^3$ and concrete compressive strength is above 50 MPa. On the other hand, new models proposed by the present study considering the concrete unit weight predict the tensile strengths of concrete with more accuracy.
Keywords
Unit weight; Tensile strength; Compressive strength; Database;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 김성철, 박기찬, 최형욱, "인공경량골재의 입도에 따른 고강도 경량콘크리트의 강도변화에 대한 실험적 연구", 한국구조물진단학회지, vol. 15, No. 5, 2011, pp.209-217.
2 김지상, 신정호, "통계적 분산을 고려한 콘크리트의 역학적 특성", 한국콘크리트학회 논문집, vol. 21, No. 6, 2009, pp.789-796.   과학기술학회마을   DOI   ScienceOn
3 양근혁, 크기효과를 고려한 구조용 경량 콘크리트의 역학적 특성 평가모델 개발, 경기대학교, 2010.
4 콘크리트학회, 콘크리트구조설계기준, 한국콘크리트학회, 서울, 2007, pp.95-96.
5 홍건호, "콘크리트 직접인장강도의 세장비 효과", 한국콘크리트학회 논문집, vol. 15, No. 2, 2003, pp.246-253.   과학기술학회마을   DOI   ScienceOn
6 ACI 213R-03, Guide for Structural Lightweight Aggregate Concrete, ACI Committee 213, American Concrete Institute, 2003.
7 ACI Committee 318, "Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary (ACI 318R-11)", American Concrete Institute, 2011.
8 Carniero, F. B. and Barcellos, A., "Tensile Strength of Concretes", RILEM Bulletin (Paris), No. 13, 1953, pp.97-123.
9 Comita Euro-International du Beton (CEB-FIP), Structural Concrete : Textbook on Behaviour, Design and Performance, International Federation for Structural Concrete (fib), 1999.
10 Li, Q. and Ansari, F., "Hight-Strength Concrete in Uniaxial Tension", ACI Materials Journal, vol. 97, No. 1, 2000, pp.49-57.
11 New Zealand Standard. Concrete structures standard. NZS 3101:2006. The design of concrete structures, Wellington, 2006, New Zealand.
12 RILEM CPC7 Recommendation, Direct tension of concrete specimens, 1975.
13 Sim J. I., Yang, K. H., Kim, H. Y. and Choi, B. J., "Size and Shape Effects on Compressive Strength of Lightweight Concrete", Cement and Concrete Research, Under Review for Publication, 2012.
14 Slate, F. O., Nilson, A. H. and Martinez, S., "Mechanical Properties of High-Strength Lightweight Concrete", ACI Journal, vol. 83, No. 4, 1986, pp.606-613.
15 The European Standard EN 1992-1-1:2004, Eurocode 2 : Design of Concrete Structures, British Standards Institution, 2004. pp.27-37.
16 Zain, M. F. M., Mahmud, H. B., Ilham, A. and Faizal, M., "Prediction of splitting tensile strength of highperformance concrete", Cement and Concrete Research, vol. 32, No. 8, 2002, pp.1251-1258.   DOI   ScienceOn
17 Zhang, M. H. and Gjørv, O. E., "Mechanical Properties of High-Strength Lightweight Concrete", ACI Materials Journal, vol. 88, No. 3, 1991, pp.240-247.
18 Zheng, A., Kwan, A. K. H. and Lee, P. K. K., "Direct Tension Test of Concrete", ACI Materials Journal, vol. 98, No. 1, 2001, pp.63-71.