• Title/Summary/Keyword: 콘크리트 열화

Search Result 428, Processing Time 0.025 seconds

Corrosion Level Measurement Technique for RC Reinforcement Using Non-Destructive Test Methods (비파괴기법을 이용한 철근 콘크리트 벽체 철근의 부식률 예측기법)

  • Roh, Young-Sook
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.24-31
    • /
    • 2011
  • In order to measure corrosion level of reinforcement rebar in RC structures, non-destructive test methods which are concrete surface current density method and infrared thermographic technique were employed to measure corrosion levels. Experimental test parameters were various levels of corrosion states(0, 1, 3, 5, 7% of weight loss) and concrete cover depth(30 mm, 40 mm) and two different reinforcing rebar arrangements. The larger amount of concrete surface current density, the higher corrosion level in reinforcement rebar. The laboratory conditions which are ambient temperature and humidity have negligible effect on the infrared thermographical data. After analysis of current density and temperature distribution from concrete surface, corrosion level of reinforcement rebar embedded in concrete can be measured qualitatively based on the amount of electric current and heat flux.

Study of Reliability Index in Concrete Structures Considering Coefficient of Variation of Degradation Factors (열화인자별 변동계수 변화에 따른 콘크리트 구조물의 신뢰성 지수에 관한 연구)

  • Kim, Joo-Hyung;Jung, Sang-Hwa;Kim, Tae-Sang;Lee, Kwang-Myoung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.541-544
    • /
    • 2008
  • Recently, a variety of researches has been carried out to estimate the reliability-based analysis and design method of concrete structures and is attracted by probabilistic-based durability analysis/method of concrete structures subjected to chloride containing environment using MCS (Monte Carlo Simulation). Probabilistic-based durability analysis/method was proposed by lots of researches, but there is the lack of data for degradation factors for the calculation of probability distribution. The reliability based durability analysis method represents that the service life and reliability index varies with the probability distribution and coefficient of variation of each factor. Therefore, in this paper, the importance of experiment data for the degradation factors is confirmed and the study of reliability index in RC structures under chloride attack environments is performed considering the variation coefficient of degradation factors.

  • PDF

An experimental study on the evaluation of abrasion resistance for concrete surface coating materials by cruising vehicle (차량 주행에 따른 콘크리트용 바닥 마감재의 마모저항성 평가방법)

  • Choi, Eun-Su;Kim, Young-Kun;Seo, Sang-Kyo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.849-852
    • /
    • 2008
  • In the wheel tracking test to evaluate abrasion resistance for concrete surface coating materials applied parking lot, weight of the wheel, test temperature, scattered sand amount, wheel speed, etc. various test condition is used for reliable evaluating the abrasion resistance performance of surface coating materials and the results depends on the test condition. In this paper, we carried experimental study as following on abrasion resistance with 2kinds of different environmental conditions. - Commons : real car tire with 300kg of load, 5km/h of speed, 80,000 cycle. - Control A : no other deterioration condition - Control B : scattering 1.0g of sand per every 30rounds from 1m height.

  • PDF

Bond Behavior of Epoxy Coated Reinforced Concrete (에폭시수지 도막 철근콘크리트의 부착특성 연구)

  • 오병환;엄주용;권지훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.79-84
    • /
    • 1993
  • 철근의 부식은 철근 콘크리트 구조물에 있어서 심각한 열화현상을 유발할 수 있으며 최근 들어 이로 인한 피해가 많이 보고되고 있다. 이와 같은 부식의 억제방안 중 철근에 직접 에폭시를 도막하는 것이 가장 효과적인 것으로 알려져 있다. 그러나 이 경우 에폭시 도막에 따른 부착성능의 저하가 우려되는 바 본 연구는 철근부식방지를 위해 에폭시를 도막한 철근의 부착특성을 고찰하기 위해 수행되었다. 주된 변수는 콘크리트 압축강도, 부착길이, 에폭시 도막두께이며 각 변수별로 부착특성의 변화를 관찰하였고 이를 통해 에폭시도막 철근의 사용성을 검토하였다. 본 실험결과에 기초하여 부착강도 예측식을 제안하였고 실험결과와 예측치를 비교하였다.

  • PDF

Evaluation on the Performance of Surface Performance Improving Agent for the Deterioration Prevention of Concrete Structures (콘크리트 구조물의 열화방지를 위한 표면 성능 개선제의 성능 평가)

  • Ryu, Gum-Sung;Koh, Kyoung-Taek;Kim, Do-Gyeum;Lee, Jang-Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.177-186
    • /
    • 2005
  • The latest concrete structure has showed that the deterioration of durability has been increased by the damage from salt, carbonization, freezing & thawing and the others. Therefore, the measures for the concrete which has deteriorated durability have been taken. Among them, it has been often used that surface treatment which cuts off the deterioration factors of durability by protecting the surface of concrete. However, troubles such as fracture and rupture in the repair layer have been reported as time goes by due to the difference between the organic repair material like epoxy and concrete properties. Researchers have been developing the repair material which can cut off the deterioration factors of durability such as $CO_2$ gas, chloride ion and water by making the formation of concrete elaborate through the reaction with calcium ion when the surface improving agent is coated on the concrete. The main ingredient of that is inorganic substance which is the same as the concrete property. This study was evaluated the surface improving agent for permeability, watertightness, air-permeability, chemical resistance and elution resistance. As a result, it has been reported that the surface improving agent improves watertightness and air-permeability by penetration more than 10mm within concrete. Therefore, it is concluded that the surface improving agent developed in this research prevents deterioration of concrete durability when it is coated on the concrete structure.

Development of Deterioration Diagnosis System for the R/C Structures - Mainly on Cause of Deterioration - (철근콘크리트 구조물의 열화 진단시스템 개발 - 열화요인 진단을 중심으로 -)

  • 이장화;박홍석;유영찬;김도겸;송영철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.243-248
    • /
    • 1994
  • The purpose of this study is to develop Deterioration Diagnosis System for the Reinforced Concrete Structure which can be used preliminary in determining the factors causing deterioration by simple inspection and mapping of the indicators of deterioration. Total 29 items compromising material, structural and constructional factors causing deterioration were considered in this system. Also the indicators of deterioration were subdivided into 54 items such as concrete crack pattern and steel corrosion etc. Each indicator of deterioration was quantatified by allocating and giving grade to each item which has extra weight according to its conscquence. Satisfactory results were obtatined by applying this Diagnosis system to the indicators of deterioration in ref. [3]. Further research was required on the indicators of deterioration in construction site to enhance the field applicability of this system.

  • PDF

부유식 건축물 유지관리를 위한 환경부하 정량화 기법에 관한 연구

  • Jo, Gyu-Hwan;Park, Dong-Cheon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.10a
    • /
    • pp.285-287
    • /
    • 2012
  • 염해는 철근 콘크리트 구조물의 주요 열화원인으로서 특히 수해양 부유식 건축물의 상부구조는 비래염분에 의한 피해에 노출되어 있고, 해수에 접하고 있는 함체는 다공질 콘크리트의 모세관으로 염수이온이 침투하므로 상당히 높은 수위의 열화 환경에 노출되어 있다고 분류할 수 있다. 본 연구는 해양에서 유입되는 비래염분량을 정량화하여 철근 콘크리트 구조물 뿐만아니라 강재 건자재의 장수명화를 꾀하는 기초자료를 구축하고자 하였다. 1년간에 걸쳐 측정된 비래염분유입 지역은 기존연구에서 조사된 1km 범위을 상당히 초과하고 있으며 그 량도 강재 발청농도를 탁월하게 상회하는 것으로 분석되었다.

  • PDF

Case Study on the Void Characteristics of Concrete Bridge Decks on the Expressway (공용중인 교량 바닥판의 내구성에 공극특성이 미치는 영향)

  • Suh, Jin-Won;Rhee, Ji-Young;Kim, Hong-Sam;Lee, Byeong-Ju;Shin, Do-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.425-428
    • /
    • 2008
  • Concrete bridge decks, as well as asphalt pavement, are directly exposed to traffic loads and environmental conditions like rain water and deiceing chemicals. In this reason, there are often observed the deteriorations of asphalt overlay and of concrete deck under pavement. In this reason, it is important to identify the clear cause of concrete quality from a practical point of view. Therefore, in this paper it was initiated to ultimately suggest a protocol offering guidance as to assurance the quality control of concrete bridge deck on the part of void characteristics of concrete. Examinations such as visual inspection, deteriorated depth, and various void characteristic performed from cored specimens of 19 concrete bridge decks of various local conditions on the expressway. This paper discuss that the bridge deck condition analyses from the testing results were compared to a foreign guide line.

  • PDF

Concrete Crack Detection Inside Finishing Materials Using Lock-in Thermography (위상 잠금 열화상 기법을 이용한 콘크리트 마감재 내부 균열 검출)

  • Myung-Hun Lee;Ukyong Woo;Hajin Choi;Jong-Chan Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.30-38
    • /
    • 2023
  • As the number of old buildings subject to safety inspection increases, the burden on designated institutions and management entities that are responsible for safety management is increasing. Accordingly, when selecting buildings subject to safety inspection, appropriate safety inspection standards and appropriate technology are essential. The current safety inspection standards for old buildings give low scores when it is difficult to confirm damage such as cracks in structural members due to finishing materials. This causes the evaluation results to be underestimated regardless of the actual safety status of the structure, resulting in an increase in the number of aging buildings subject to safety inspection. Accordingly, this study proposed a thermal imaging technique, a non-destructive and non-contact inspection, to detect cracks inside finishing materials. A concrete specimen was produced to observe cracks inside the finishing material using a thermal imaging camera, and thermal image data was measured by exciting a heat source on the concrete surface and cracked area. As a result of the measurement, it was confirmed that it was possible to observe cracks inside the finishing material with a width of 0.3mm, 0.5mm, and 0.7mm, but it was difficult to determine the cracks due to uneven temperature distribution due to surface peeling and peeling of the wallpaper. Accordingly, as a result of performing data analysis by deriving the amplitude and phase difference of the thermal image data, clear crack measurement was possible for 0.5mm and 0.7mm cracks. Based on this study, we hope to increase the efficiency of field application and analysis through the development of technology using big data-based deep learning in the diagnosis of internal crack damage in finishing materials.