• Title/Summary/Keyword: 콘크리트의 크리프 및 건조수축

Search Result 73, Processing Time 0.025 seconds

Basic and Creepy Characteristics of High Performance Concrete Complexly Using Blast Furnace Slag Powder and Fly ash (고로슬래그 미분말 및 플라이애시를 복합사용한 고성능 콘크리트의 기초 및 크리프 특성)

  • Park, Byung-Kwan;Pei, Chang-Chun;Kim, Soo-Yung;Kim, Bok-Kyu;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.717-720
    • /
    • 2008
  • This study analyzed the basic characteristics and the characteristic of drying shrinkage and creep of high performance concrete complexly metathesized by BS and FA and the results are summarized as the followings. Regarding to the compressive strengths according to the passage of aging, OPC was appeared to be larger than B2F1 at the initial aging but B2F1 was appeared to be higher than OPC at aging 28days. Regarding to the changing rate of drying shrinkage according to the passage of aging, both OPC and B2F1 were appeared to be increased and, at aging 60days, B2F1 was appeared to be largely increased by about 42% as -21${\times}$10-6 및 -51${\times}$10-6 as compared to OPC. The transforming rate of creep was appeared to have been largely increased at the initial aging and then be smoothly increased somewhat as the aging was passed. And regardign to the transforming rate of creep after 60 days had been passed, B2F1 was appeared to be largely increased by about 13% as compared to OPC.

  • PDF

Evaluation of Drying Shrinkage and Creep Characteristics by Strength Differences of Concrete Mixed with Admixture (혼화재료 혼입 콘크리트 강도 차에 따른 건조수축 및 크리프 특성 평가)

  • Park, Dong-Cheon;Song, Hwa-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.199-200
    • /
    • 2021
  • In the study, creep and dry shrinkage characteristics were evaluated to determine the material properties necessary for structural analysis such as column shortening and differential drying shrinkage. All the experiments were conducted in an constant temperature and humidity room. The mechanical properties as well as the specific creep and ultimate dry shrinkage values were derived. In addition the characteristics of the physical value of the high-strength fiber reinforced concrete were considered.

  • PDF

Corrosion Induced Long Term Crack Width Prediction for Structural Concrete Members (철근콘크리트 부재에서 철근 부식을 고려한 장기 균열폭 예측)

  • Lee, Gi-Yeol;Yang, Jun-Ho;Chung, Won-Yong;Rho, Sam-Young;Kim, Dae-Joong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.199-200
    • /
    • 2009
  • This research developed a long-term crack width prediction model based on bond characteristics that considered steel corrosion, concrete shrinkage and creep in cracking stabilized structural concrete members.

  • PDF

Experimental Study on Mechanical Properties and Deformation Behavior of Concrete with Recycled Aggregates and Steel Fiber (순환골재 및 강섬유를 혼입한 콘크리트의 역학적 특성 및 변형 거동에 관한 실험적 연구)

  • Lee, Hyun-Ho;Lee, Tae-Wang
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.357-363
    • /
    • 2016
  • To solve the exhaustion problem of natural aggregate which were create the high value in construction and environmental industry, recycled aggregates have considerable benefits than other materials. However, even though many researches have been conducted with recycled aggregates, building structures with recycled aggregated are rarely constructed because it has lower quality than natural aggregates have. In this study, mechanical and strain properties of recycled aggregates concrete containing steel fibers have been reviewed in order to complement performance of recycled aggregates concrete. As results, recycled aggregates concrete showed lower compressive strength and elastic modulus than plain concrete. But, recycled aggregates concrete containing steel fibers showed equivalent performance with plain concrete. In review of drying shrinkage and creep coefficient, recycled aggregates concrete containing steel fibers showed similar behavior with plain concrete in the range of 0.5 Vol.% fiber content rate by internal restraint effect, moisture transport restraint effect and strength enhancement effect of steel fiber. Therefore, it is considered that mixing steel fibers with concrete is the effective method as a active application plan for recycled aggregates.

Uncertainty and Sensitivity Analysis of Time-Dependent Deformation in Prestressed Concrete Box Girder Bridges (프리스트레스트 콘크리트 박스 거더 교량의 시간에 따른 변형의 확률 해석 및 민감도 해석)

  • 오병환;양인환
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.149-159
    • /
    • 1998
  • The reasonable prediction of time-dependent deformation of prestressed concrete(PSC) box girder bridges is very important for accurate construction as well as good serviceability. The long-term behavior is mostly influenced by the probabilistic characteristic of creep and shrinkage. This paper presents a method of statistical analysis and sensitivity analysis of creep and shrinkage effects in PSC box been taken into account - model uncertainty, parameter variation and environmental condition. The statistical and sensitivity analyses are performed by using the numerical simulation of Latin Hypercube sampling. For each sample, the time-dependent structural analysis is performed to produce response data, which are then statistically analyzed. The probabilistic prediction of the confidence limits on long-term effects of creep and shrinkage is then expressed. Three measure are examined to quantify the sensitivity of the outputs of each of the input variables. These are rank correlation coefficient(RCC), partical rank correlation coefficient(PRCC) and standardiozed rank regression coefficient(SRRC) computed on the ranks of the observations. Three creep and shrinkage models - i. e., ACI model. CEB-FIP model and the model in Korea Highway Bridge Specification - are studied. The creep model uncertainy factor and the relative humidity appear to be the most dominant factors with regard to the model output uncertainty.

Suggestion of the Prediction Model for Material Properties and Creep of 60~80MPa Grade High Strength Concrete (설계기준강도 60~80MPa급 고강도콘크리트의 재료 특성 및 크리프 예측모델식 제안)

  • Moon, Hyung-Jae;Koo, Kyung-Mo;Kim, Hong-Seop;Seok, Won-Kyun;Lee, Byeong-Goo;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.517-525
    • /
    • 2018
  • The construction of super tall building which structure is RC and must be certainly considered on column shortening estimation and construction reflected concrete creep has been increased. Regarding the Fck 60~80MPa grade high strength concrete applied in the domestic super tall building project, the mechanical properties and creep deflection according to curing conditions(Drying creep/Basic creep) were reviewed in this research. Results of compressive strength and elastic modulus under sealed curing condition were 5% higher than unsealed condition and difference of results according to the curing condition was increased over time. Autogenous and drying shrinkage tendency showed adversely in the case of high strength concrete. Additionally, creep modulus under unseal curing condition was evaluated 2~3 times higher than sealed condition. Modified model of ACI-209 based on test result was applied to estimate long period shortening of vertical members(such as Core Wall/Mega Column) exactly, it is designed to modify and suggest the optimal creep model based on various data accumulated during construction, in the future.

A Prediction of the Long-Term Deflection of RC Beams Externally Bonded with CFRP and GFRP (CFRP와 GFRP로 외부 부착된 철근콘크리트보의 장기 처짐 예측)

  • Kim, Sung-Hu;Kim, Kwang-Soo;Han, Kyoung-Bong;Song, Seul-Ki;Park, Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.765-772
    • /
    • 2008
  • For RC structures, long-term deformation occurs due to the inherent characteristics, which are creep and shrinkage. In terms of serviceability, it is important to limit deflection caused by the deformation to the allowable deflection. In the recent years, various repair and strengthening methods have been used to improve performance of the existing RC structures. One of the typical methods is FRP externally bonded method (EBR). Fiber reinforced polymer (FRP) has been used worldwide as repair and strengthening materials due to its superior properties. Besides, it has to offer improved strengthening performance not only under instantaneous load but sustained load. Therefore, accurate prediction method of deflection for the RC members externally bonded with FRP under sustained load is required. In this paper, three beams were fabricated. Two beams were externally strengthened with one of CFRP plate and GFRP plate respectively. Total three beams were superimposed under sustained load of 25 kN. During 470 days, deflections at midspan were obtained. Moreover, creep coefficients and shrinkage strains were calculated by using ACI-209 code and CEB-FIP code. In order to predict the deflection of the beams, EMM, AEMM, Branson's method and Mayer's method were used. Through the experiment, it was found that the specimen with CFRP plate has the most flexural capacity and Mayer's method is the most precise method to predict total long-term deflections.

Column Shortening Prediction of Concrete Filled Tubes using Monte Carlo Method (몬테카를로 기법을 이용한 CFT 기둥축소량의 예측)

  • Jang, Sung-Woo;Song, Hwa-Cheol;Sho, Kwang-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.1
    • /
    • pp.75-84
    • /
    • 2010
  • According to the available study and experimental data about the long term behavior of CFT(Concrete Filled Tube) columns, the creep and of concrete in CFT columns are smaller than those of RC columns because of the confinement effect of outer steel columns. In this study, the uncertainties associated with assumed values for concrete properties such as strength, creep coefficients, and service load have been considered and analyzed for the prediction of time-dependent column shortening of CFT column. The CFT column shortening analysis using Monte Carlo method is proposed and an of a 37 story tall building with CFT columns is studied for illustration. According to the results obtained by the probability analysis with multi parameters, the effect of variation coefficient for 3 parameters is investigated considering confidence interval.

  • PDF

Concrete Aging-Dependent Deflection Analysis of Flexural Composite Members Using Sectional Analysis Method (단면해석법을 이용한 합성형 휨 부재의 재령 종속적 처짐해석)

  • Sung Won-Jin;Kim Jeong-Hyeon;Lee Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.155-162
    • /
    • 2004
  • An analytical method to predict the time dependent flexural behavior of composite girder is presented based on sectional analysis. The time dependent constitutive relation accounting for the early-age concrete properties including maturing of elastic modulus, creep and shrinkage is derived in an incremental format by the first order Taylor series expansion. The sectional analysis calculates the axial and curvature strains based on the force and moment equilibriums. The deflection curve of the girder approximated by the quadratic polynomial function is calculated by applying to the proper boundary conditions in the consecutive segments. Numerical applications are made for the 3-span double composite steel box girder which is a composite bridge girder filled with concrete at the bottom of the steel box in the negative moment region. The calculated results are compared with those by finite element analysis results. Close agreement is observed between the two approaches.

The Estimation of Stress Variationdue to Creep and Shrinkage on Composite Girder Section (크리프 및 건조수축에 의한 합성거더 단면의 응력변화 추정)

  • Kim, Byung-Kyu;Kim, Su-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.357-360
    • /
    • 2006
  • Under sustained load, the stress variation occurs due to creep and shrinkage of concrete on the sections of steel-concrete composite girders. In standard specification for highway bridge, the method of stress estimation considering time effects is based on the concept of Yassumi method. In this study, comparing the analysis results using the AEMM and Yassumii method long-term behaviors, the rationality of specified requirements is checked.

  • PDF