• Title/Summary/Keyword: 콘크리트압축강도

Search Result 2,396, Processing Time 0.026 seconds

A Study on the Durabilities of High Volume Coal Ash Concrete by the Kinds of Coal Ash (석탄회 종류에 따른 석탄회를 대량 사용한 콘크리트의 내구특성에 관한 연구)

  • Choi, Se-Jin;Kim, Moo-Han
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.3
    • /
    • pp.73-78
    • /
    • 2009
  • Coal ash is a by-product of the combustion of pulverized coal, and much of this is dumped in landfills. The disposal of coal ash is one of the major issues for environmental problems. In this paper, the effects of the kinds and replacement ratio of coal ash on the durabilities of concrete mixtures are investigated. Fine aggregate was replaced with coal ash(fly ash and bottom ash) in five different ratios, of 0%, 10%, 20%, 35%, and 50% by volume. Test results indicated that the compressive strength increased with the increase in fly ash percentage. The loss of compressive strength of bottom ash concrete mixes after immersion in sulphuric acid solution was less than in the control mix(BA0). In addition, the carbonation depth of fly ash concrete mixes was lower than the control mix(FA0).

Floor Impact Sound and Vibration Characteristics Affected by the Compressive Strength of Concrete (콘크리트 슬래브 압축강도에 따른 바닥충격진동 및 소음특성)

  • Jeong, Jeong-Ho;Yoo, Seung-Yup;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.796-799
    • /
    • 2005
  • In 2005, a regulation on the heavy-weight impact sound was released, which restricted concrete slab thickness of standard floor to 210mm. To reduce heavy-weight impact sound, damping materials and structural reinforcement system have been proposed. In this study, the effect of compressive strength on the heavy-weight impact vibration and sound were investigated. FEM analysis was conducted for the 34PY apartment with different concrete strength (210, 350, 420kg/cm$^2$). In addition, apartment floors with different concrete strength were constructed and the floor impact vibration and sound were measured. Results of FEM analysis and measurement show that the resonance frequency of concrete slab was increased by the increment of concrete strength. However, floor impact sound pressure level did not decrease because the nor impact vibration and sound pressure level in 63Hz band increased.

  • PDF

Safety Assessment of Burned Building using Numerical Calculation of Unsteady Heat Conduction Equation (비정상 열전도 방정식의 수치 해석을 이용한 화재 건물의 안전성 평가)

  • 태순호;이병곤
    • Fire Science and Engineering
    • /
    • v.11 no.2
    • /
    • pp.19-24
    • /
    • 1997
  • numerical simulation of unsteady heat conduction equation were carried out by finite control volume method using the gas temperature derived from fire model as a boundary value. The reduction of compressive and flexural by heating were calculated from the temperature and the given reduction rate. It is shown that this method could be well applied to assess the safety of concrete column or beam of the burned building.

  • PDF

Application on the Prediction Model of the Compressive Strength of Concrete by Maturity Method (적산온도에 의한 콘크리트 압축강도 추정모델의 적용성 검토)

  • Khil, Bae-Su;Kwon, Young-Jin;Nam, Jae-Hyun;Kim, Moo-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.177-183
    • /
    • 1999
  • The major object of this study is to investigate experimentally the experimental equation by the non-destructive testing methods of ultrasonic pulse velocity, rebound number, combined method of ultrasonic pulse velocity and rebound number, maturity which are applicable to the evaluation of compressive strength of concrete at early ages. Also test result of mix are statistically analyzed to infer the correlation coefficient between the maturity and the compressive strength of concrete. The results show good application of Logistic curve for estimating strength development under various curing temperature. The relation between ultrasonic pulse velocity, rebound number, combined method of ultrasonic pulse velocity and rebound number and compressive strength of concrete have low correlation coefficient, but maturity method show good correlation coefficient.

  • PDF

Prediction of Compressive Strength of Concrete using Probabilistic Neural Networks (확률 신경망이론을 사용한 콘크리트 압축강도 추정)

  • 김두기;이종재;장성규;임병용
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.311-316
    • /
    • 2003
  • The compressive strength of concrete is a criterion to produce concrete. However, the tests on the compressive strength are complicated and time-consuming. More importantly, it is too late to make improvement even if the test result does not satisfy the required strength, since the test is usually performed at the 28th day after the placement of Concrete at the Construction site. Therefore, strength prediction before the placement of concrete is highly desirable. This study presents the probabilistic technique for predicting the compressive strength of concrete on the basis of concrete mix proportions. The estimation of the strength is based on the probabilistic neural network, and show that the present methods are very efficient and reasonable in predicting the compressive strength of concrete probabilistically.

  • PDF

A Basic Study on the Development of Compressive Strength Prediction System for Blast Furnace Slag Contained Concrete using IoT Sensor (IoT센서를 이용한 고로슬래그 혼입 콘크리트의 압축강도 예측 시스템 개발에 관한 기초 연구)

  • Kim, Han-Sol;Jang, Jong-Min;Min, Tae-Beom;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.58-59
    • /
    • 2020
  • The change of temperature and humidity in early-age concrete has a great influence on the durability of the structure. In this study, a reliable wireless sensor network system and a concrete embedded type Compressive strength prediction sensor were designed using the Arduino platform. The accuracy of the compressive strength prediction sensor was verified through a mock-up experiment, and it was confirmed that the experiment had sufficient accuracy to be used in the field environment.

  • PDF

Comparison of the Compressive Strength between Damaged Part due to Early Frost Damage and Sound Part of the Concrete in Winter (동절기 타설 콘크리트의 초기동해 피해부위와 건전부위 압축강도 발현 특성 비교)

  • Choi, Yoon-Ho;Kim, Sang-Min;Park, Byoung-Joo;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.98-99
    • /
    • 2020
  • The objective of the study is to investigate the compressive strength of damaged part by early frost damage and sound part of the concrete placed when exposed to a low temperature of -20℃ for 24 hours in normal concrete. Test results indicated that the compressive strength of damaged part was 14.5 MPa lower than that of sounf part due to early frost damage.

  • PDF

Prediction of Compressive Strength Using Setting Time and Apparent Activation Energy of Blast Furnace Slag Concrete (응결시간과 겉보기 활성화 에너지를 이용한 고로슬래그 콘크리트의 압축강도 예측에 관한 연구)

  • Kim, Han-Sol;Yang, Hyun-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.101-102
    • /
    • 2021
  • The compressive strength of concrete is greatly affected by the temperature inside the concrete at the initial age immediately after pouring. The apparent activation energy of cement and the setting time of concrete are major factors influencing the development of compressive strength of concrete. This study measured the apparent activation energy and setting time according to the change in W/B for each mixing rate of Ground Granulated Blast-Furnace Slag (GGBFS). And after calculating the compressive strength prediction model, the accuracy of the prediction model was evaluated by comparing the predicted compressive strength and the compressive strength.

  • PDF

Experimental Study on the Effect of the Amount of Cellulose type Viscosity Agent on the Physical Properties of High-Fluidity Concrete Using Low-Binder (셀룰로스계 증점제의 첨가량이 고유동 저분체 콘크리트의 물리적 특성에 미치는 영향에 관한 실험적 연구)

  • Ko, Hye-Bin;Cho, In-Sung;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.129-130
    • /
    • 2021
  • For the development of high-fluidity concrete using low-binder, The effect of the use of the developed acrylic viscosity agent on the physical properties of concrete evaluated. The amount acrylic viscosity agent used was 0.28%, 0.29% and 0.30% based on the binder amount of 350kg/m3, and slump flow test, air volume measurement, U-Box passing test and strength compressive were conducted to determine the effect of the physical properties of concrete. it was judged that 0.29% of the cellulose type viscosity agent used in high-fluidity concrete using low-binder was most suitable.

  • PDF

Effect of the Use of Recycled Coarse Aggregate with the size of 5~13mm on the Fundamental Properties of the Concrete (5~13 mm 순환 굵은 골재 혼합 사용이 콘크리트의 기초적 특성에 미치는 영향)

  • Kang, Byeong-Hoe;Jung, Sang-Woon;Zhao, Yang;Hwang, Jin-Guang;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.19-20
    • /
    • 2013
  • Consider about aggregate's price, coarse aggregates from 13 to 25mm were widely used in ready mixed concrete company. But if only use 13 to 25mm aggregates in the concrete, gap grading problem would be occurred. When recycled aggregates from 13 to 25mm was used, continuous grading would increase the durability and strength for the concrete, meanwhile the construction waste materials would also be reused. In this paper, 5-13mm recycled aggregates was utilized, to analyse the fundamental properties for concrete, strength has been tested to evaluate the quality and reusing effect of the recycled materials.

  • PDF