• Title/Summary/Keyword: 코어-셸 구조

Search Result 4, Processing Time 0.015 seconds

Thermal Conductivity Measurement of Ge-SixGe1-x Core-Shell Nanowires Using Suspended Microdevices (뜬 마이크로 디바이스를 이용한 Ge-SixGe1-x Core-Shell Nanowires 의 열전도율 측정)

  • Park, Hyun Joon;Nah, Jung hyo;Tutuc, Emanuel;Seol, Jae Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.825-829
    • /
    • 2015
  • Theoretical calculations suggest that the thermoelectric figure of merit (ZT) can be improved by introducing a core-shell heterostructure to a semiconductor nanowire because of the reduced thermal conductivity of the nanowire. To experimentally verify the decrease in thermal conductivity in core-shell nanowires, the thermal conductivity of Ge-SixGe1-x core-shell nanowires grown by chemical vapor deposition (CVD) was measured using suspended microdevices. The silicon composition (Xsi) in the shells was measured to be about 0.65, and the remainder of the germanium in the shells was shown to play a role in decreasing defects originating from the lattice mismatch between the cores and shells. In addition to the standard four-point current- voltage (I-V) measurement, the measurement configuration based on the Wheatstone bridge was attempted to enhance the measurement sensitivity. The measured thermal conductivity values are in the range of 9-13 W/mK at room temperature and are lower by approximately 30 than that of a germanium nanowire with a comparable diameter.

Preparation of Cu-Ag Powder having Core-Shell Structure by Electroless Plating Method (무전해 도금법을 이용한 코어 셸 구조의 Cu-Ag분말 제조)

  • Kim, Jong-Wan;Lee, Huk-Hee;Won, Chang-Whan
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.1
    • /
    • pp.47-52
    • /
    • 2009
  • Cu-Ag powder having Core-Shell structure was prepared from by electroless plating method using agents such as $AgNO_3$, $NH_{4}OH$, Hydroquinone. Ag coated copper powders were analyzed using scanning electron microscopy(SEM) and energy dispersive X-ray spectrometer(EDX). The silver coating layer of copper powder was affected from various reaction conditions such as molar ratio of $NH_{4}OH$, $AgNO_3$, and pulp density. Free silver was generated below 0.1M or 0.3M and above of $NH_{4}OH$ mole ratio. Silver coating layer thickened as addition of $AgNO_3$. When the pulp density reached 12% with 0.2M $NH_{4}OH$, and 0.15M $AgNO_3$ at $4^{\circ}C$, silver was homogeneously distributed around the copper particles and free silver particles were not generated.

Thickness Control of Core Shell type Nano CoFe2O4@SiO2 Structure (두께 조절이 가능한 코어셸 형태의 SiO2 coated CoFe2O4 구조)

  • Yu, Ri;Kim, Yoo-Jin;Pee, Jae-Hwan;Kim, Kyung-Ja
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.230-234
    • /
    • 2010
  • Homogenous silica-coated $CoFe_2O_4$ samples with controlled silica thickness were synthesized by the reverse microemulsion method. First, 7 nm size cobalt ferrite nanoparticles were prepared by thermal decomposition methods. Hydrophobic cobalt ferrites were coated with controlled $SiO_2$ using polyoxyethylene(5)nonylphenylether (Igepal) as a surfactant, $NH_4OH$ and tetraethyl orthosilicate (TEOS). The well controlled thickness of the silica shell was found to depend on the reaction time and the amount of surfactant used during production. Thick shell was prepared by increasing reaction time and small amount of surfactant.

Progress in Composite Polymer Membrane for Application as Separator in Lithium Ion Battery (리튬 이온 전지의 분리막으로 사용하기 위한 복합 고분자 막의 동향)

  • Oh, Seok Hyeon;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.228-241
    • /
    • 2020
  • Separators, which produces physical layer between a cathode and anode, are getting enormous attention as the quality of the separator determines the performance of lithium ion batteries (LIBs). Porous membranes based on polyethylene (PE) and polypropylene (PP) are generally utilized as the separator of LIBs because of their high electrochemical stability and suitable mechanical strength. However, low thermal resistance and wettability of PE and PP membranes limited the potential of LIBs. Operating at the temperature exceeding the melting point of membranes, the separators change their structures which lead to short circuit of LIBs. Low wettability of the separators corresponds to low ionic conductivity which increases the cell resistance. To overcome these weaknesses of PE and PP separators, different types of separator were prepared by co-electrospinning, applying coating layer, forming core shell around membrane, and papermaking method. The synthesized separator greatly enhanced the heat resistance and wettability of separator and mechanical properties like flexibility and tensile strength. In this review different type of polymer membrane used as separator in lithium ion battery are discussed.