• Title/Summary/Keyword: 컴퓨터교과

Search Result 836, Processing Time 0.026 seconds

The educational models using enhanced mathematics ICT in the Korean IT environments (21세기 선진형 ICT 수학 교육 방법론 모델)

  • Kim, Duk-Sun;Park, Jin-Young;Lee, Sang-Gu
    • Communications of Mathematical Education
    • /
    • v.22 no.4
    • /
    • pp.533-543
    • /
    • 2008
  • Recently, many advanced countries have used original ICT tools in their educational courses. But Korea didn't have any effective origin ICT tools in our mathematical education, compared with other countries which have developed various tools, for examples, Web-Mathematica and HP Calculator. Although we have the advanced IT environment, the educational environments in mathematics using ICT seems to be not promising. In this paper, we suggest a new mathematics education tools in ICT and the internet environments in Korea, and a teaching and studyingmodel for the teachers, students and classrooms. It is based on the Sage-Math and RPG. Sage-Math which is the software based on the web and RPG(Random Problem Generator) will give a good answer for the future of Korean mathematics ICT education.

  • PDF

The Effect of the Integrative Education Using a 3D Printer on the Computational Thinking Ability of Elementary School Students (3D프린터를 활용한 융합교육이 초등학생의 컴퓨팅 사고력에 미치는 영향)

  • Lim, Donghun;Kim, Taeyoung
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.5
    • /
    • pp.469-480
    • /
    • 2019
  • One of the goals of the new 2015 revised curriculum is to cultivate the creativity of students who will live in the era of the Fourth Industrial Revolution to create new things through diverse ideas and challenges based on basic learning skills. Accordingly, in order to solve the given problems rationally, the convergence problem solving ability that can process and utilize various areas of knowledge and information is becoming important. Therefore, in this study, we designed the integrative education using a 3D printer based on Tinkercad modeling and applied it to the class to investigate the effect on the improvement of computing thinking ability of elementary school students. To verify the contents of the study, two classes of 25 sixth-grade elementary school students were divided into an experimental group and a controlled group. For the experimental group, 12 classes of convergence education programs using a 3D printer were applied for about three months, and the same amount of general curriculum was conducted for the control group. After that, the t-tests were carried out using the pre-post test to measure the effectiveness of the computational thinking ability. After the application of the program, the experimental group showed statistically significant improvement in computational thinking ability, but the controlled group showed no statistically significant difference. The results show that convergence education using the Tinkercad modeling-based 3D printer has a positive effect on the improvement of computing thinking ability of elementary school students.

Analysis of the Users' Viewing Characteristics of YouTube Video Contents Related to Science Education (과학교육 관련 유튜브 동영상 콘텐츠 이용자들의 시청 특징 분석)

  • Jeong, Eunju;Son, Jeongwoo
    • Journal of Science Education
    • /
    • v.45 no.1
    • /
    • pp.118-128
    • /
    • 2021
  • In this study, as the viewing characteristics of users of YouTube video content related to science education, 'Inflow and Access' is analyzed to find out the interaction between learners and the system, and 'Reaction and Subscription' to find out the interaction between learners and contents. To this end, the YouTube channel "Elementary Science TV," was selected as the subject of research. The channel is mainly focused on the contents of elementary science textbooks, STEAM, and gifted education. The channel's data of YouTube studio was analyzed. The following results were obtained through data analysis: first, as a result of 'Inflow and Access' analysis, YouTube video content related to science education was most often introduced through external links, and the access device was mainly a computer. Second, as a result of the analysis of 'Reaction and Subscription,' 'like' and commenting performed as a reaction to the video were less than 1% of the number of views. Most users watch without a subscription, and watch for longer when using self-directed. Although this study was analyzed through a limited channel called 'Elementary Science TV,' we were able to discover a little about the users' viewing characteristics of YouTube video contents related to science education. In the future, it is expected that it can be used as a basic material for creating videos related to science education for remote classes, establishing a science education video platform.

A Study on Analysis and Development of Education Program in Information Security Major (대학의 정보보호 관련학과 교육과정분석과 모델개발에 관한 연구)

  • 양정모;이옥연;이형우;하재철;유승재;이민섭
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.3
    • /
    • pp.17-26
    • /
    • 2003
  • Recently, as the internet is widespread rapidly among the public, people can use a variety of useful information services through the internet. Accordingly, the protection of information supplied by computer networks 5 has become a matter of primary concern on the whole world. To accede to the realistic demands, it has been worked out some countermeasures to cultivate the experts in information security by the government and many educational facilities. Already the government authority has carried out the each kinds of concerning projects under the framed a policy, Five-Year Development Plan for Information Security Technology. Also, many domestic universities perceives such an international trend, and so they frame their plans to train for the experts in this field, including to found a department with respect to the information security. They are ready to execute their tangible works, such as establishment of educational goal, development of teaching materials, planning curriculum, construction of laboratories and ensuring instructors. Moreover, such universities lead to their students who want to be information security experts to get the fundamental knowledge to lay the foundation for acquiring the information security technology in their bachelor course. In this note, we survey and analyze the curricula of newly-established or member-extended departments with respect to information security fields of some leading universities in the inside and outside of the country, and in conclusion, we propose the effective model of curriculum and educational goal to train the students for the information security experts.

A Study on Elementary Education Examples for Data Science using Entry (엔트리를 활용한 초등 데이터 과학 교육 사례 연구)

  • Hur, Kyeong
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.5
    • /
    • pp.473-481
    • /
    • 2020
  • Data science starts with small data analysis and includes machine learning and deep learning for big data analysis. Data science is a core area of artificial intelligence technology and should be systematically reflected in the school curriculum. For data science education, The Entry also provides a data analysis tool for elementary education. In a big data analysis, data samples are extracted and analysis results are interpreted through statistical guesses and judgments. In this paper, the big data analysis area that requires statistical knowledge is excluded from the elementary area, and data science education examples focusing on the elementary area are proposed. To this end, the general data science education stage was explained first, and the elementary data science education stage was newly proposed. After that, an example of comparing values of data variables and an example of analyzing correlations between data variables were proposed with public small data provided by Entry, according to the elementary data science education stage. By using these Entry data-analysis examples proposed in this paper, it is possible to provide data science convergence education in elementary school, with given data generated from various subjects. In addition, data science educational materials combined with text, audio and video recognition AI tools can be developed by using the Entry.

Operation of a 3-Year Training Program for Elementary and Secondary Administrators to Foster Creative Convergence Talent (창의융합 인재 양성을 위한 3년간의 초·중등 관리자 연수 프로그램 운영)

  • Jung, Yujin;Park, Namje
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.3
    • /
    • pp.177-186
    • /
    • 2021
  • The 2015 revised curriculum is structured around the core competencies of the 21st century, this is in line with the world's flow of education, such as OECD Education 2030. A future practical leading model was studied to provide a variety of creative teaching and learning experiences to elementary and Secondary students using intelligent information technology to cultivate core competencies such as ICT and computing thinking. In order for this practical model to stably settle the school field, the training was planned and operated to strengthen the creative convergence education capacity required by the teachers at the unit school through various types of the training. In particular, a nationwide administrators training program was operated for three years, reflecting the new curriculum, teaching and learning methods, and evaluation that can lead to future convergence talent training. In this paper, the perception of creative convergence education was investigated and analyzed considering the influence that administrators may have on the school field. Based on this, through the three-year operation results of the training, it was intended to establish a new training method for stable access to future creative convergence education under the post-corona era's social issues.

Development of Tutorial for Measuring Gravity Acceleration Using Arduino and Its Educational Application (아두이노를 활용한 중력 가속도 측정과 관련된 튜토리얼 및 교육적 활용 방안)

  • Kim, Hyung-Uk;Mun, Seong-Yun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.6
    • /
    • pp.69-77
    • /
    • 2022
  • Physical experiment through MBL has been used in many schools for a long time since students can check the experiment results immediately and conduct the experiment easily. However, conducting the experiment, not knowing the principle of the device or simply concentrating on the derived data has been raised as the problem of MBL experiment. To supplement this problem, this study measured the acceleration of gravity with the picket fence method, which is often used in MBL experiment, utilizing Arduino, calculated the error rate through a comparison to the actual acceleration of gravity and discussed the educational application of the experiment to measure it. As a result of the experiment, the error rate between the acceleration of gravity calculated by the experiment and the actual acceleration of gravity was about 1%, so it turned out that relatively accurate measurements were possible. Also, the sample mean of the experimental value was included in the confidence interval of 95%, so it could be concluded that it was a significant experiment. In addition, this study showed the possibility of the educational application of the experiment to measure it through the following: It can supplement the structural disadvantages of MBL; it can consider the interaction between Physics and Math; it is possible to converge with information course in STEAM education; and it is inexpensive to be equipped with the equipment. Hopefully, the physical experiment utilizing Arduino will further be revitalized in science gifted education based on this study.

Analysis of the Causes for Continuous Employment of Employed Students after Graduation from Characterization High School -Focusing on the Commercial High Schools (특성화고등학교 졸업 후 취업자의 근속 원인 분석 연구 -상업계 고등학교를 중심으로)

  • Jeong, Kyu-Han;Lee, Jang-Hee
    • Journal of Practical Engineering Education
    • /
    • v.14 no.1
    • /
    • pp.165-177
    • /
    • 2022
  • The purpose of this study is to present the direction of employment guidance for long-term service through the analysis of the cause of employment of employed students who graduated from specialized high school. In particular, the purpose is to present student guidance plans for long-term service by analyzing personal reasons for students graduating from commercial high schools and policy factors for individual, school, company, and government service after employment. To this end, a survey was conducted for graduates of commercial high schools nationwide, and the validity, reliability, and causality of the survey data were analyzed by applying Exploratory Factor Analysis, Cronbach's Alpha, and decision tree analysis techniques. We found that personal goal setting for employment is an important factor for working for more than 1 year, personal relationships at work and personal characteristics are important factors for working for more than 3 years. In addition, we found that the reason for getting a job is that personal reasons and school recommendations are great, special lectures on employment, camps, and 'advice from seniors and teachers' programs are helpful in finding a job, and accounting and computer related subjects are helpful for long-term employment. Accordingly, in specialized high schools, it is required to prepare specific instructional measures for education such as setting personal goals and the formation of human relationships that are the basis of social life, and to actively operate the above subjects and programs to help with employment and longevity.

A Study on the Improvement of Computing Thinking Education through the Analysis of the Perception of SW Education Learners (SW 교육 학습자의 인식 분석을 통한 컴퓨팅 사고력 교육 개선 방안에 관한 연구)

  • ChwaCheol Shin;YoungTae Kim
    • Journal of Industrial Convergence
    • /
    • v.21 no.3
    • /
    • pp.195-202
    • /
    • 2023
  • This study analyzes the results of a survey based on classes conducted in the field to understand the educational needs of learners, and reflects the elements necessary for SW education. In this study, various experimental elements according to learning motivation and learning achievement were constructed and designed through previous studies. As a survey applied to this study, experimental elements in three categories: Faculty Competences(FC), Learner Competences(LC), and Educational Conditions(EC) were analyzed by primary area and secondary major, respectively. As a result of analyzing CT-based SW education by area, the development of educational materials, understanding of lectures, and teaching methods showed high satisfaction, while communication with students, difficulty of lectures, and the number of students were relatively low. The results of the analysis by major were found to be more difficult and less interesting in the humanities than in the engineering field. In this study, Based on these statistical results proposes the need for non-major SW education to improve into an interesting curriculum for effective liberal arts education in the future in terms of enhancing learners' problem-solving skills.

Suggestion of Computational Thinking-Scientific Inquiry (CT-SI) Model through the Exploration of the Relationship Between Scientific Problem Solving Process and Computational Thinking (과학적 문제해결과정과 컴퓨팅 사고의 관련성 탐색을 통한 컴퓨팅 사고 기반 과학 탐구(CT-SI) 모형의 제안)

  • Hwang, Yohan;Mun, Kongju
    • Journal of Science Education
    • /
    • v.44 no.1
    • /
    • pp.92-111
    • /
    • 2020
  • The 2015 revised science curriculum and NGSS (Next Generation Science Standard) suggest computational thinking as an inquiry skill or competency. Particularly, concern in computational thinking has increased since the Ministry of Education has required software education since 2014. However, there is still insufficient discussion on how to integrate computational thinking in science education. Therefore, this study aims to prepare a way to integrate computational thinking elements into scientific inquiry by analyzing the related literature. In order to achieve this goal, we summarized various definitions of the elements of computational thinking and analyzed general problem solving process and scientific inquiry process to develop and suggest the model. We also considered integrated problem solving cases from the computer science field and summarized the elements of the Computational Thinking-Scientific Inquiry (CT-SI) model. We asked scientists to explain their research process based on the elements. Based on these explanations from the scientists, we developed 'Problem-finding' CT-SI model and 'Problem solving' CT-SI model. These two models were reviewed by scientists. 'Problem-finding' model is relevant for selecting information and analyzing problems in the theoretical research. 'Problem solving' is suitable for engineering problem solving process using a general research process and engineering design. In addition, two teachers evaluated whether these models could be used in the secondary school curriculum. The models we developed in this study linked with the scientific inquiry and this will help enhance the practices of 'collecting, analyzing and interpreting data,' 'use of mathematical thinking and computer' suggested in the 2015 revised curriculum.