• Title/Summary/Keyword: 커패시터 멀티플라이어

Search Result 4, Processing Time 0.055 seconds

Design and Fabrication of An Improved Capacitor Multiplier with Good Frequency Characteristics (주파수 특성이 향상된 커패시터 멀티플라이어 설계 및 제작)

  • Lee, Dae-Hwan;Back, Ki-Ju;Han, Da-In;Ryu, Byoung-Son;Kim, Yeong-Seuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.59-64
    • /
    • 2013
  • In this paper, a capacitor multiplier with good frequency characteristics has been proposed. Effective capacitance of conventional capacitor multiplier decreases as frequency increases due to internal series resistance. On the other hand, the proposed capacitor multiplier using cascode structure has smaller internal resistance, thus shows good frequency characteristics. Conventional and proposed capacitor multiplier were fabricated using Samsung $0.13{\mu}m$ CMOS process and frequency characteristics of capacitor multipliers were measured using LPF. Measurement results show that the conventional capacitor multiplier has maximum 53% of capacitance error, however the proposed multiplier has less than 10% of capacitance error for the frequency change from 100kHz to 1MHz.

Design of a CCM/DCM dual mode DC-DC Buck Converter with Capacitor Multiplier (커패시터 멀티플라이어를 갖는 CCM/DCM 이중모드 DC-DC 벅 컨버터의 설계)

  • Choi, Jin-Woong;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.21-26
    • /
    • 2016
  • This paper presents a step-down DC-DC buck converter with a CCM/DCM dual-mode function for the internal power stage of portable electronic device. The proposed converter that is operated with a high frequency of 1 MHz consists of a power stage and a control block. The power stage has a power MOS transistor, inductor, capacitor, and feedback resistors for the control loop. The control part has a pulse width modulation (PWM) block, error amplifier, ramp generator, and oscillator. In this paper, an external capacitor for compensation has been replaced with a multiplier equivalent CMOS circuit for area reduction of integrated circuits. In addition, the circuit includes protection block, such as over voltage protection (OVP), under voltage lock out (UVLO), and thermal shutdown (TSD) block. The proposed circuit was designed and verified using a $0.18{\mu}m$ CMOS process parameter by Cadence Spectra circuit design program. The SPICE simulation results showed a peak efficiency of 94.8 %, a ripple voltage of 3.29 mV ripple, and a 1.8 V output voltage with supply voltages ranging from 2.7 to 3.3 V.

Design of monolithic DC-DC Buck converter with on chip soft-start circuit (온칩 시동회로를 갖는 CMOS DC-DC 벅 변환기 설계)

  • Park, Seung-Chan;Lim, Dong-Kyun;Lee, Sang-Min;Yoon, Kwang-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7A
    • /
    • pp.568-573
    • /
    • 2009
  • This paper presents a step-down DC-DC converter with On-chip Compensation for battery-operated portable electronic devices which are designed in O.13um CMOS standard process. In an effort to decrease system volume, this paper proposes the on chip compensation circuit using capacitor multiplier method. Capacitor multiplier method can minimize error amplifier's compensation capacitor size by 10%. It allows the compensation block of DC-DC converter be easily integrated on a chip and occupy less layout area. But capacitor multiplier operation reduces DC-DC converter efficiency. As a result, this converter shows maximum efficiency over 87.2% for the output voltage of 1.2V (input voltage : 3.3V), maximum load current 500mA, and 25mA output ripple current. This voltage mode controled buck converter has 1MHz switching frequency.

Design of the High Efficiency DC-DC Converter Using Low Power Buffer and On-chip (저 전력 버퍼 회로를 이용한 무선 모바일 용 스텝다운 DC-DC 변환기)

  • Cho, Dae-Woong;Kim, Soek-Jin;Park, Seung-Chan;Lim, Dong-Kyun;Jang, Kyung-Oun;Yoon, Kwang-Sub
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.9
    • /
    • pp.1-7
    • /
    • 2008
  • This paper proposes 3.3V input and 1.8V output voltage mode step-down DC-DC buck converter for wireless mobile system which is designed in a standard 0.35$\mu$m CMOS process. The proposed capacitor multiplier method can minimize error amplifier compensation block size by 30%. It allows the compensation block of DC-DC converter be easily integrated on a chip. Also, we improve efficiency to 3% using low power buffer. Measurement result shows that the circuit has less than 1.17% output ripple voltage and maximum 83.9% power efficiency.