• Title/Summary/Keyword: 캘러스

Search Result 572, Processing Time 0.017 seconds

Growth and Utility of Rhodiola sachalinensis in Baekdu Mountain I. Induction of Callus and Composition of Free Amino Acids (백두산 자생 참돌꽃의 생육과 이용 I. 배양세포 유도와 유리아미 노산 조성)

  • 오인숙;소상섭;허명자
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.1
    • /
    • pp.148-152
    • /
    • 2004
  • This study was carried out to investigate the callus formation and to determine the composition and contents of the Hee amino acids in seedlings and callus of Rhodiola sachalinensis. The callus formation from the part of seedling-roots was the most effective on MS (Murashige and Skoog) media supplemented with 2.0 mg $L^{-1}$2,, 4-D included in 1.0 mg $L^{-1}$ kinetin than the other experimental plots which prepared with the different concentration of the various growth regulators. Free amino acids extracted from the explants and the callus were a total of 25∼26 kinds. Especially, the basic amino acids such as arginine, lysine and histidine released in callus were found relatively in a large quantity. These results suggest that the cultured callus of Rhodiola sachatinensis could induce for the mass production of the other useful ingredients.

Plant Regeneration and Somatic Embryo Formation from Root-Derived Callus of Rice (벼 뿌리조직 유래의 캘러스로부터 체세포배 형성과 식물체 재분화)

  • 손재근;김경민;김종수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.3
    • /
    • pp.143-148
    • /
    • 1995
  • The competence of callus formation and plant regeneration from root derived callus was higher in japonica cultivars than those of Tongil-type cultivars of rice. A japonica type cultivars Yeongdeogbyeo, showed the highest capacity (13%) for plant regeneration from root calli of 6 cultivars tested. The callus induced from seed and root tissues maintained higher capacity for plant regeneration during 7 passages of subculture on N$_{6}$ solid media at 2-week intervals. The maximum frequency (2 x 10$^{5}$ mL) of round cells and their cell colonies showed about 24 days after suspension culture of root-derived callus in N$_{6}$ medium with lmg/L 2,4-D, 300mg/L casein hydrolysate, 10mM L-proline, 20g/L sucrose and 30g/L sorbitol. The frequency of somatic embryo formation in suspension cultures of root-derived callus increased with prolonged advance of subculture time from 30 to 90 days, but their regenerative capacities decreased.

  • PDF

Chromosome Variation in Callus Cells Derived from Different Cytogenetic Type Plants of Scilla scilloides Complex (세포유전적 유형이 다른 무릇(Scilla scilloidise Complex)에서 유도된 캘러스 세포의 염색체 변이)

  • Jae-Wook BANG;Jae-hyun PARK;Eun-Young Choi
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.1
    • /
    • pp.59-63
    • /
    • 1994
  • Chromosome variation in callus cells initiated from different cytogenetic type plane of Scilla scilloides Complex was analysed Considerable variation in both chromosome number and struchure was found in type AA, while no autosomal variation was detected in type BB callus cells. In allotetraploid AABB, two hypoploid cells were fount while a hypoploid cell and three hyperploid cells were found in eutetraploid cells of BBBB. Autosomes in callus cells derived from the plant with B-chromosomes were more stable than those from the plant without B-chromosome. We doubt that B-chromosomes have a selective function for the autosomes in culture of S. scilloides Complex.

  • PDF

Effect of Incubation Time, Concentration of Enzyme, and 2,4-D on Isolation and Callus Formation of Protoplast from Callus of Citrus junos (遊離시간 , 酵素處理 및 2,4-D 농도가 재래 유자(Citrus junos)의 캘러스由來 原形質體 遊離 및 培養에 미치는 영향)

  • 오성도;김영숙
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.5
    • /
    • pp.335-339
    • /
    • 1998
  • The factors affecting the isolation and culture of the protoplast of embryogenic callus, derived from immature ovule in Citrus junos, were examined. An incubation time in enzyme solution of 16 hrs was preferable for protoplast isolation. Efficient protoplast yields were obtained from the treatment of equal concentration of 0.7 M $\textrm{BH}_{3}$ to the enzyme solution containing 1.0% cellulase, 1.0% macerozyme and 0.2% pectolyase. Protoplast cultured in MT medium with 0.1 mg/L 2,4-D showed vigorous division and some of them formed callus. Induced callus was subcultured on solid MT medium but the callus showed very slow growth. The above results show the possibility to culture from protoplast fusion in Citrus genera.

  • PDF

Callus Induction from Seeds of Italian ryegrass and Plant Regeneration (이탈리안 라이그라스 종자로부터 캘러스 유도 및 식물체 재분화)

  • 임용우;김기용;최기준;성병렬;신정섭
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.1
    • /
    • pp.25-30
    • /
    • 2000
  • The conditions for callus formation and plant regeneration were confirmed in Italian ryegrass (Lolium mulfiorum Lam.). Among SH (Schenk and Hildebrandt), MS (Murashige and Skoog) and N6 medium (Chu) MS medium was highest degree of efficiencies respectively in callus formation and plant regeneration. In this study, we determined volume of hormones and other compounds appended in media. For callus formation, only $5\;mg/\;{\ell}$ of 2,4-D (2,4-dichlorophenoxy acetic acid) was appended in their media. For plant regeneration, we used MS medium containing $1.0\;mg/\;{\ell}$ of BA and $0.1\;mg/\;{\ell}$ of NAA.

  • PDF

Somatic Embryogenesis and Plant Regeneration from Immature Zygotic Embryo Culture of Wasabia japonica Matsum. (고추냉이의 미숙배배양으로부터 체세포배 발생과 식물체 재분화)

  • 은종선;고정애;김영선;김명준
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.4
    • /
    • pp.207-211
    • /
    • 1995
  • Immature zygotic embryos from immature seeds of Wasabia japonica (cv Dalma) were isolated and cultured on modified MS medium supplemented with 2,4-D, IAA, and BA. Immature zygotic embryos were classified into torpedo shape and cotyledon stage. The highest rates of callus formation were obtained of 1.0mg/L IAA(torpedo stage, 90.0%)and 1.0mg/L 2,4D plus 0.1mg/L BA(cotyledany stage,84.3%). Somatic embryos after 60 days of culture. These numerous somatic embryo could be seperated and subcultured on the same media for further propagation. After 90 days of culture, most somatic embryos were developed well organized embryos which were able to produce into whole plants.

  • PDF

New embryogenesis from atypical bodies and plant regeneration from long-term subcultured embryogenic callus in rose (장기간 계대배양 된 장미 배발생 캘러스로부터 식물체 재분화 및 비정형체로부터 새로운 배발생캘러스 재생)

  • Lee, Su Young;Do, Kyoung Ran;Cheon, Kyeong-Seong;Kim, Won Hee;Kwon, O Hyeon;Lee, Hye Jin
    • Journal of Plant Biotechnology
    • /
    • v.41 no.2
    • /
    • pp.89-93
    • /
    • 2014
  • Long-term subcultured rose embryogenic calluses, which had been maintained for more than 5 to 6 years since the first embryogenesis from calluses induced from in vitro roots of rose, were identified as potential material for the development of transgenic plants. The first embryogenic calluses from 'Sweet Yellow' and two breeding lines (KR056002 and KR056006) were obtained in 2007 and 2009, respectively. Subsequently, we found that plants regenerated from long-term embryogenic calluses (LEC). Whereas the LEC from 'Sweet Yellow' takes 3 to 4 months to regenerate plants, those of the two breeding lines take 4 to 5 months. This period of time is the same as that taken for plants to regenerate from the first embryogenic callus. New embryogenesis was observed from atypical bodies (ABs) that appeared during the process of long-term subculture. We found that it is possible to use the AB as a material for new embryogenesis.

Induction of Embryogenic Callus and Plant Regeneration by Mature Embryo Culture of Onion (Allium cepa L.) (양파의 성숙배 배양을 통한 체세포배발생 캘러스 유기 및 식물체 재분화)

  • Cho Kwang-Soo;Hur Eun-Joo;Hong Su-Young;Moon Ji-Young
    • Journal of Plant Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.31-35
    • /
    • 2005
  • To obtain regeneration system of onion, we analyzed the effects of 2,4-D and BA concentration on the embryogenic callus induction from mature embryos. The highest embryogenic callus induction ratio was shown on MS medium (Murashie and Skoog 1962) containing $2.5\;\cal{mg/L}\;or\;5\;\cal{mg/L}$ picloram after mature embryos were placed on medium. When induced callus were cultured on half strength of MS medium containing $1\;\cal{mg/L}$ Kinetin, the highest shoot formation ratio was observed on MS medium containing $1\;{mg/L}$ 2,4-D and $1\;{mg/L}$ BA. Embryogenic callus were cultured in MS liquid medium containing $1\;\ccal{mg/L}$ of 2,4-D and $1\;\cal{mg/L}$ BA. The suspension cultured cell clumps could be mass propagated. Embryogenic callus were friable, but non-embryogenic callus included a lot of moisture, hence the identification between embryogenic and non-embryogenic callus as easily achieved. When embryogenic callus as cultured on half strength of MS medium containing $1\;\cal{mg/L}$ Kinetin, shoots were induced. The whole plantlet was obtained on rooting medium containing $0.5\;\cal{mg/}$ of NAA.

Genetic Transformation of Watermelon (Citrullus vulgaris Schard.) by Callus Induction (캘러스 유도에 의한 수박 형질전환)

  • Kwon, Jung-Hee;Park, Sang-Mi;Lim, Mi-Young;Shin, Yoon-Sup;Harn, Chee-Hark
    • Journal of Plant Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.37-45
    • /
    • 2007
  • The genetic transformation of watermelon by Agrobacterium has been known very difficult and a few successful cases have been reported by obtaining the direct shoot formation. However, since this direct shoot formation is not guaranteed the stable transformation, the stable transformation with reproducibility is required by a different approach such as a callus induced manner. The best conditions for inducing the callus from cotyledon and root explants of watermelon were 2 mg/L zeatin + 0.1 mg/L IAA and 2 mg/L BA + 0.1 mg/L 2,4-D, respectively. The GFP expression in the callus was identified and monitored through fluorescent microscopy after transformation with pmGFP5-ER vector. Paromomycin rather than kanamycin was used for selecting the nptll gene expression because it was more effective to select the watermelon explants. Four different callus types were observed and the solid green callus showed stronger GFP expression. The highest frequency of GFP expression in the callus developed from cotyledon was 9.0% (WM8 inbred line), while the highest frequency from root was 8.3% (WM6 inbred line). The WMV-CP was transformed using the method of GFP transformation and the genetic transformation of WMV-CP was confirmed by PCR and Southern blot analysis. Here we present a system for callus induction of watermelon explant and the callus induced method would facilitate the establishment of stable watermelon transformation.

Production of Ginsenoside in Callus of Ginseng Hairy Roots (인삼 모상근의 캘러스를 이용한 ginsenoside 생산)

  • Kwon, Jung-Hee;Cheon, Hyun-Choon;Yang, Deok-Cho
    • Journal of Ginseng Research
    • /
    • v.27 no.2
    • /
    • pp.78-85
    • /
    • 2003
  • By the Agrobacterium rhizogenes A$_4$ were induced a transformed callus of ginseng hairy root and examine to find the possibility whether it can produce certain ginsenoside. Investigations for a finding out to optimal culture medium showed that BA application is better than more factorial composition between auxins and cytokinins. For the induction of hairy root callus of ginseng, l/2 MS medium containing 1 to 3 mg of benzyladenine(BA) per liter gave the best result. The growth of ginseng hairy root callus(GHC) cultured with the 1/2MS medium supplemented with 2 mg BA/L was selected for best suspension cultures. The optimum concentration of BA for ginsenosides production was found to be 2 mg/L. Probably the inoculum size of callus plays a role with the ginsenoside production in suspension culture. AS for inoculum size of callus, 50 mg was superior to 150 mg for growth and ginsenoside production. Ginsenoside contents were highest in the suspension culture grown for four weeks under continuous light condition. In fact that continous light treatment promote strongly the synthesis of ginsenoside of the hairy root callus is first result in the world and the numerously induced root hairs of the callus leads a new method for ginsenoside production.