• Title/Summary/Keyword: 캐리

Search Result 90, Processing Time 0.024 seconds

Sign-Extension Overhead Reduction by Propagated-Carry Selection (전파캐리의 선택에 의한 부호확장 오버헤드의 감소)

  • 조경주;김명순;유경주;정진균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6C
    • /
    • pp.632-639
    • /
    • 2002
  • To reduce the area and power consumption in constant coefficient multiplications, the constant coefficient can be encoded using canonic signed digit(CSD) representation. When the partial product terms are added depending on the nonzero bit(1 or -1) positions in the CSD-encoded multiplier, all sign bits are properly extended before the addition takes place. In this paper, to reduce the overhead due to sign extension, a new method is proposed based on the fact that carry propagation in the sign extension part can be controlled such that a desired input bit can be propagated as a carry. Also, a fixed-width multiplier design method suitable for CSD multiplication is proposed. As an application, 43-tap filbert transformer for SSB/BPSK-DS/CDMA is implemented. It is shown that, about 16∼28% adders can be saved by the proposed method compared with the conventional methods.

Implementation of RSA Exponentiator Based on Radix-$2^k$ Modular Multiplication Algorithm (Radix-$2^k$ 모듈라 곱셈 알고리즘 기반의 RSA 지수승 연산기 설계)

  • 권택원;최준림
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.2
    • /
    • pp.35-44
    • /
    • 2002
  • In this paper, an implementation method of RSA exponentiator based on Radix-$2^k$ modular multiplication algorithm is presented and verified. We use Booth receding algorithm to implement Radix-$2^k$ modular multiplication and implement radix-16 modular multiplier using 2K-byte memory and CSA(carry-save adder) array - with two full adder and three half adder delays. For high speed final addition we use a reduced carry generation and propagation scheme called pseudo carry look-ahead adder. Furthermore, the optimum value of the radix is presented through the trade-off between the operating frequency and the throughput for given Silicon technology. We have verified 1,024-bit RSA processor using Altera FPGA EP2K1500E device and Samsung 0.3$\mu\textrm{m}$ technology. In case of the radix-16 modular multiplication algorithm, (n+4+1)/4 clock cycles are needed and the 1,024-bit modular exponentiation is performed in 5.38ms at 50MHz.

Design of 32-bit Floating Point Multiplier for FPGA (FPGA를 위한 32비트 부동소수점 곱셈기 설계)

  • Xuhao Zhang;Dae-Ik Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.409-416
    • /
    • 2024
  • With the expansion of floating-point operation requirements for fast high-speed data signal processing and logic operations, the speed of the floating-point operation unit is the key to affect system operation. This paper studies the performance characteristics of different floating-point multiplier schemes, completes partial product compression in the form of carry and sum, and then uses a carry look-ahead adder to obtain the result. Intel Quartus II CAD tool is used for describing Verilog HDL and evaluating performance results of the floating point multipliers. Floating point multipliers are analyzed and compared based on area, speed, and power consumption. The FMAX of modified Booth encoding with Wallace tree is 33.96 Mhz, which is 2.04 times faster than the booth encoding, 1.62 times faster than the modified booth encoding, 1.04 times faster than the booth encoding with wallace tree. Furthermore, compared to modified booth encoding, the area of modified booth encoding with wallace tree is reduced by 24.88%, and power consumption of that is reduced by 2.5%.

Perspective of Juvenile Problems by Musical (브로드웨이 뮤지컬 를 통하여 본 청소년 문제)

  • Kim, Hye-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.4
    • /
    • pp.204-210
    • /
    • 2016
  • The reason to research the musical is it has a lot of useful things for the various studies department not only Korea Musical Theatre own although it has been a successful musical theater on the Off-Broadway by Reboot culture era. Even though does not release on Korea, the popular of the show and powerful results of environments have delivered through the international magazines and Youtube channels to Korea. To study of Musical will be lead us to the world which adopted to the social problems as the youth school violence, family communication hurdle, and religion missing by script not only the musical drama but the interpretation for Teen-agers social problem. There are many kinds of Neo educations are proved by smart learning as STEAM. The students who have been studied with the smartphone, I-pad, personal computer, or laptop as smart tools for class are familliar as feedback processing speedly. It would make them learn the skill for their knowledge of a digital age, but it should not let them how to understand other people's emotion as real although STEAM has emtion part. Besides they have communicated on the social network not the ordinary man but the special ego by themselves, as mention or retweet as like their amusements and make the gossip group. This study would show the perspective for understanding Teen-agers Social Problem and who is the victims today's juvenile problems though the musical based on Jim Taulli's directing.

A Novel Redundant Binary Montgomery Multiplier and Hardware Architecture (새로운 잉여 이진 Montgomery 곱셈기와 하드웨어 구조)

  • Lim Dae-Sung;Chang Nam-Su;Ji Sung-Yeon;Kim Sung-Kyoung;Lee Sang-Jin;Koo Bon-Seok
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.4
    • /
    • pp.33-41
    • /
    • 2006
  • RSA cryptosystem is of great use in systems such as IC card, mobile system, WPKI, electronic cash, SET, SSL and so on. RSA is performed through modular exponentiation. It is well known that the Montgomery multiplier is efficient in general. The critical path delay of the Montgomery multiplier depends on an addition of three operands, the problem that is taken over carry-propagation makes big influence at an efficiency of Montgomery Multiplier. Recently, the use of the Carry Save Adder(CSA) which has no carry propagation has worked McIvor et al. proposed a couple of Montgomery multiplication for an ideal exponentiation, the one and the other are made of 3 steps and 2 steps of CSA respectively. The latter one is more efficient than the first one in terms of the time complexity. In this paper, for faster operation than the latter one we use binary signed-digit(SD) number system which has no carry-propagation. We propose a new redundant binary adder(RBA) that performs the addition between two binary SD numbers and apply to Montgomery multiplier. Instead of the binary SD addition rule using in existing RBAs, we propose a new addition rule. And, we construct and simulate to the proposed adder using gates provided from SAMSUNG STD130 $0.18{\mu}m$ 1.8V CMOS Standard Cell Library. The result is faster by a minimum 12.46% in terms of the time complexity than McIvor's 2 method and existing RBAs.

A Practical Synthesis Technique for Optimal Arithmetic Hardware based on Carry-Save-Adders (캐리-세이브 가산기에 기초한 연산 하드웨어 최적화를 위한 실질적 합성 기법)

  • Kim, Tae-Hwan;Eom, Jun-Hyeong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.10
    • /
    • pp.520-529
    • /
    • 2001
  • Carry-save-adder(CSA) is one of the most effective operation cells in implementing an arithmetic hardware with high performace and small circuit area. An fundamental drawback of the existing CAS applications is that the applications are limited to the local parts of arithmetic circuit that are directly converted to additions. To resolve the limitation, we propose a set of new CSA transformation techniques: optimizing arithmetics with multiplexors, optimizing arithmetics in multiple designs, and optimizing arithmetics with multiplications. We then design a new CSA transformation algorithm which integrates the proposed techniques, so that we are able to utilize CSAs more globally. An extensive experimentation for practical designs are provided to show the effectiveness of our proposed algorithm over the conventional CSA techniques.

  • PDF

High-Speed Dynamic Decimal Adder Design (고속 다이나믹 십진 가산기 설계)

  • You, Young-Gap;Kim, Yong-Dae;Choi, Jong-Hwa
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.6 s.312
    • /
    • pp.10-16
    • /
    • 2006
  • This paper proposed a carry lookahead (CLA) circuitry design. It was based on dynamic circuit aiming at delay reduction in an addition of BCD coded decimal numbers. The performance of these decimal adders is analyzed demonstrating their speed improvement. Timing simulation on the proposed decimal addition circuit employing $0.18{\mu}m$ CMOS technology yielded the worst-case delay of 0.83 ns at 16-digit. The proposed scheme showed a speed improvement compared to several schemes for decimal addition.

A Design of Modular Multiplier Based on Improved Multi-Precision Carry Save Adder (개선된 다정도 CSA에 기반한 모듈라 곱셈기 설계)

  • Kim, Dae-Young;Lee, Jun-Yong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.4
    • /
    • pp.223-230
    • /
    • 2006
  • The method of implementing a modular multiplier for Montgomery multiplication by using an adder depends on a selected adder. When using a CPA, there is a carry propagation problem. When using a CSA, it needs an additional calculation for a final result. The Multiplier using a Multi-precision CSA can solve both problems simultaneously by combining a CSA and a CPA. This paper presents an improved MP-CSA which reduces hardware resources and operation time by changing a MP-CSA's carry chain structure. Consequently, the proposed multiplier is more suitable for the module of long bit multiplication and exponentiation using a modular multiplier repeatedly.

The Method of Addition Subexpression for High-Speed Multiplierless FIR Filters (곱셈기를 사용하지 않은 고속 FIR 필터를 위한 부분 항 덧셈 방법)

  • Kim, Yong-Eun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.32-36
    • /
    • 2008
  • Multiplierless FIR filters can be designed by only adders using Common Subexpression algorithm. It has small area compared with filter which using multipliers. But it has long operation time because of carry ripple from the adder. In this paper, when the subexpressions are added in multiplier less filters, the number of subexpressions maintains 2 until final addition to avoid carry ripple of the addition, so the subexpression addition time of the filter can be reduced. To verify proposed method, subexpression adder circuit of the FIR filter is designed using given example of paper. The designed filter was synthesized using Hynix 0.18um process. By Synopsys simulation results, it is shown that by the proposed method, area, propagation delay time can be reduced up to 53.2%, 57.9% compared with conventional design method which using pipeline.

An Excess-3 Code Carry Lookahead Design for High-Speed Decimal Addition (고속 십진 가산을 위한 3초과 코드 Carry Lookahead설계)

  • 최종화;유영갑
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.5
    • /
    • pp.241-249
    • /
    • 2003
  • Carry lookahead(CLA) circuitry of decimal adders is proposed aiming at delay reduction. The truncation error in calculation of monetary interests may accumulate yielding a substantial amount of errors. Binary Coded Decimal(BCD) additions. for example, eliminate the truncation error in a fractional representation of decimal numbers. The proposed BCD carry lookahead scheme is aiming at the speed improvements without any truncation errors in the addition of decimal fractions. The delay estimation of the BCD CLA is demonstrated with improved performance in addition. Further reduction in delay can be achieved introducing non-weighted number system such as the excess-3 code.