• Title/Summary/Keyword: 카메라 기반 인식

Search Result 702, Processing Time 0.038 seconds

Object Detection & Targeting with Lab Block Matching (Lab 블록 매칭을 이용한 객체 탐색 및 타겟팅)

  • Lee, Jung-a;Choi, Chul;Choi, Young-Kwan;Park, Chang-Choon
    • Annual Conference of KIPS
    • /
    • 2004.05a
    • /
    • pp.727-730
    • /
    • 2004
  • 영상은 복잡한 객체들의 집합으로 이루어져 있기 때문에 영상에 포함된 객체를 분리하는 일은 컴퓨터 비전이나 인식 등 많은 분야에서 중요시 된다. 영상 처리 측면에서 객체를 분할하기 위해서 색상, 모양, 질감, 움직임 등 다양한 기법들이 이용되고 있다. 본 논문에서는 정확한 색상의 비교를 위해서 CIE 색상 모델을 이용하고 있으며 이것을 기반으로 객체를 추출하고 있다. 그리고 추출된 객체의 해석과 검증을 위해서 모양 기반의 분석법을 이용하고 있다. 본 논문에서는 Pan/Tilt 카메라의 타겟팅(Targeting)과 포커싱(Focusing)을 위해 영상 내에 포함되어진 객체를 검출하기 위한 방법론을 제안하고자 한다. 객체를 인식하기 위해 CIE 색상 모델을 이용한 색상 매칭 기법을 제안하고 있다. 색상의 분포를 파악하기 위해서 CIE 모델이 생성해내는 Lab 블록을 통계적인 방법으로 분석한다. 그리고 분석된 결과는 CIE 블록 매칭(Bock Matching) 기법의 기준이 되며 이것을 이용해서 후보 객체 영역(Candidate Object Area)을 추출하게 된다. 추출된 후보 객체 영역을 검증하기 위해서 모멘트를 이용한 모양 기반의 분석을 활용하고 있다.

  • PDF

Implementation of Pattern Recognition Algorithm Using Line Scan Camera for Recognition of Path and Location of AGV (무인운반차(AGV)의 주행경로 및 위치인식을 위한 라인스캔카메라를 이용한 패턴인식 알고리즘 구현)

  • Kim, Soo Hyun;Lee, Hyung Gyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2018
  • AGVS (Automated Guided Vehicle System) is a core technology of logistics automation which automatically moves specific objects or goods within a certain work space. Conventional AGVS generally requires the in-door localization system and each AGV equips expensive sensors such as laser, magnetic, inertial sensors for the route recognition and automatic navigation. thus the high installation cost is inevitable and there are many restrictions on route(path) modification or expansion. To address this issue, in this paper, we propose a cost-effective and scalable AGV based on a light-weight pattern recognition technique. The proposed pattern recognition technology not only enables autonomous driving by recognizing the route(path), but also provides a technique for figuring out the loc ation of AGV itself by recognizing the simple patterns(bar-code like) installed on the route. This significantly reduces the cost of implementing AGVS as well as benefiting from route modification and expansion. In order to verify the effectiveness of the proposed technique, we first implement a pattern recognition algorithm on a light-weight MCU(Micro Control Unit), and then verify the results by implementing an MCU_controlled AGV prototype.

Implementation for the Biometric User Identification System Based on Smart Card (SMART CARD 기반 생체인식 사용자 인증시스템의 구현)

  • 주동현;고기영;김두영
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.25-31
    • /
    • 2004
  • This paper is research about the improvement of recognition rate of the biometrics user identification system using the data previously stored in the non contact Ic smart card. The proposed system identifies the user by analyzing the iris pattern his or her us. First, after extracting the area of the iris from the image of the iris of an eye which is taken by CCD camera, and then we save PCA Coefficient using GHA(Generalized Hebbian Algorithm) into the Smart Card. When we confirmed the users, we compared the imformation of the biometrics of users with that of smart card. In case two kinds of information was the same, we classified the data by using SVM(Support Vector Machine). The Experimental result showed that this system outperformed the previous developed system.

  • PDF

Vision-based Self Localization Using Ceiling Artificial Landmark for Ubiquitous Mobile Robot (유비쿼터스 이동로봇용 천장 인공표식을 이용한 비젼기반 자기위치인식법)

  • Lee Ju-Sang;Lim Young-Cheol;Ryoo Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.560-566
    • /
    • 2005
  • In this paper, a practical technique for correction of a distorted image for vision-based localization of ubiquitous mobile robot. The localization of mobile robot is essential and is realized by using camera vision system. In order to wide the view angle of camera, the vision system includes a fish-eye lens, which distorts the image. Because a mobile robot moves rapidly, the image processing should he fast to recognize the localization. Thus, we propose the practical correction technique for a distorted image, verify the Performance by experimental test.

Adjustment of Stereoscopic Camera's Optical Axis Distance Considering Human Stereopsis Characteristics (인간의 입체시 특성을 고려한 입체 카메라의 광축 간격 조절)

  • Hyung, Sae-Chan;Chun, Kook-Jin;Har, Dong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.41-49
    • /
    • 2011
  • Recently, the infrastructure of stereoscopy is growing fast. Though, the stereoscopy producing capacity is insufficient to meet the demand of the market. Because, at the moment most people who produce the stereoscopy are skilled for the two-dimensional images. So the characteristics of the human stereopsis and stereoscopic cameras are not well considered, it occurs many problems to the viewer. According to this, we studied about the optical axis distance adjustment of stereoscopic camera considering size perception in human stereopsis. First, we measured the area of the object in the image which depends on the optical axis distance. Second, based on the output of first experiment, we conducted a survey and figured out that if we keep the optical axis distance between 3.9cm to 130cm, it wouldn't occur any size perception and will be possible to produce high quality stereoscopy.

Implementation of a Helmet Azimuth Tracking System in the Vehicle (이동체 내의 헬멧 방위각 추적 시스템 구현)

  • Lee, Ji-Hoon;Chung, Hae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.4
    • /
    • pp.529-535
    • /
    • 2020
  • It is important to secure the driver's external field view in armored vehicles surrounded by iron armor for preparation for the enemy's firepower. For this purpose, a 360 degree rotatable surveillance camera is mounted on the vehicle. In this case, the key idea is to recognize the head of the driver wearing a helmet so that the external camera rotated in exactly the same direction. In this paper, we introduce a method that uses a MEMS-based AHRS sensor and a illuminance sensor to compensate for the disadvantages of the existing optical method and implements it with low cost. The key idea is to set the direction of the camera by using the difference between the Euler angles detected by two sensors mounted on the camera and the helmet, and to adjust the direction with illuminance sensor from time to time to remove the drift error of sensors. The implemented prototype will show the camera's direction matches exactly in driver's one.

Design for Access Control System based on Voice Recognition for Infectious Disease Prevention (전염성 확산 차단을 위한 음성인식 기반의 출입통제시스템 설계)

  • Mun, Hyung-Jin;Han, Kun-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.7
    • /
    • pp.19-24
    • /
    • 2020
  • WHO declared a global pandemic on March 11th for Corona 19. However, there is a situation where you have to go to building for face-to-face education or seminars for economic and social activities. The first check method of COVID-19 infection is to measure body temperature, so the primary entrance and exit is blocked for near-field body temperature measurement. However, since it is troublesome to check directly, thermal camera is installed at the entrance of the building, and body temperature is measured indirectly using the infrared camera to control access. In case of middle and high schools, universities, and lifelong education center, we need a system that is possible to interoperate with attendance checks and automatically recognizes whether to wear masks and can authenticate students. We proposed the system that is to confirm whether to wear a mask with a camera that is embedded in a smart mirror, and that authenticates the user through voice recognition of the user who wants to enter the building by using voice recognition technology and determines whether to enter them or not. The proposed system can check attendance if it is linked with near-field temperature measurement and attendance check APP of student's smart phone.

Positioning Method Using a Vehicular Black-Box Camera and a 2D Barcode in an Indoor Parking Lot (스마트폰 카메라와 2차원 바코드를 이용한 실내 주차장 내 측위 방법)

  • Song, Jihyun;Lee, Jae-sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.142-152
    • /
    • 2016
  • GPS is not able to be used for indoor positioning and currently most of techniques emerging to overcome the limit of GPS utilize private wireless networks. However, these methods require high costs for installation and maintenance, and they are inappropriate to be used in the place where precise positioning is needed as in indoor parking lots. This paper proposes a vehicular indoor positioning method based on QR-code recognition. The method gets an absolute coordinate through QR-code scanning, and obtain the location (an relative coordinate) of a black-box camera using the tilt and roll angle correction through affine transformation, scale transformation, and trigonometric function. Using these information of an absolute coordinate and an relative one, the precise position of a car is estimated. As a result, average error of 13.79cm is achieved and it corresponds to just 27.6% error rate in contrast to 50cm error of the recent technique based on wireless networks.

ARVisualizer : A Markerless Augmented Reality Approach for Indoor Building Information Visualization System

  • Kim, Albert Hee-Kwan;Cho, Hyeon-Dal
    • Spatial Information Research
    • /
    • v.16 no.4
    • /
    • pp.455-465
    • /
    • 2008
  • Augmented reality (AR) has tremendous potential in visualizing geospatial information, especially on the actual physical scenes. However, to utilize augmented reality in mobile system, many researches have undergone with GPS or ubiquitous marker based approaches. Although there are several papers written with vision based markerless tracking, previous approaches provide fairly good results only in largely under "controlled environments." Localization and tracking of current position become more complex problem when it is used in indoor environments. Many proposed Radio Frequency (RF) based tracking and localization. However, it does cause deployment problems of large RF-based sensors and readers. In this paper, we present a noble markerless AR approach for indoor (possible outdoor, too) navigation system only using monoSLAM (Monocular Simultaneous Localization and Map building) algorithm to full-fill our grand effort to develop mobile seamless indoor/outdoor u-GIS system. The paper briefly explains the basic SLAM algorithm, then the implementation of our system.

  • PDF

CNN-based People Recognition for Vision Occupancy Sensors (비전 점유센서를 위한 합성곱 신경망 기반 사람 인식)

  • Lee, Seung Soo;Choi, Changyeol;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.23 no.2
    • /
    • pp.274-282
    • /
    • 2018
  • Most occupancy sensors installed in buildings, households and so forth are pyroelectric infra-red (PIR) sensors. One of disadvantages is that PIR sensor can not detect the stationary person due to its functionality of detecting the variation of thermal temperature. In order to overcome this problem, the utilization of camera vision sensors has gained interests, where object tracking is used for detecting the stationary persons. However, the object tracking has an inherent problem such as tracking drift. Therefore, the recognition of humans in static trackers is an important task. In this paper, we propose a CNN-based human recognition to determine whether a static tracker contains humans. Experimental results validated that human and non-humans are classified with accuracy of about 88% and that the proposed method can be incorporated into practical vision occupancy sensors.