DOI QR코드

DOI QR Code

CNN-based People Recognition for Vision Occupancy Sensors

비전 점유센서를 위한 합성곱 신경망 기반 사람 인식

  • Lee, Seung Soo (Department of Computer and Communications Eng., Kangwon National University) ;
  • Choi, Changyeol (Department of Computer and Communications Eng., Kangwon National University) ;
  • Kim, Manbae (Department of Computer and Communications Eng., Kangwon National University)
  • 이승수 (강원대학교 컴퓨터정보통신공학과) ;
  • 최창열 (강원대학교 컴퓨터정보통신공학과) ;
  • 김만배 (강원대학교 컴퓨터정보통신공학과)
  • Received : 2017.10.19
  • Accepted : 2018.03.06
  • Published : 2018.03.30

Abstract

Most occupancy sensors installed in buildings, households and so forth are pyroelectric infra-red (PIR) sensors. One of disadvantages is that PIR sensor can not detect the stationary person due to its functionality of detecting the variation of thermal temperature. In order to overcome this problem, the utilization of camera vision sensors has gained interests, where object tracking is used for detecting the stationary persons. However, the object tracking has an inherent problem such as tracking drift. Therefore, the recognition of humans in static trackers is an important task. In this paper, we propose a CNN-based human recognition to determine whether a static tracker contains humans. Experimental results validated that human and non-humans are classified with accuracy of about 88% and that the proposed method can be incorporated into practical vision occupancy sensors.

대부분의 건물 등에 설치된 점유센서는 PIR(pyroelectric infra-red)이 주로 활용되고 있다. 하지만 PIR은 온도 변화를 감지하는 기능 때문에 정지된 사람을 감지할 수 없는 단점이 있다. 최근 이 단점을 극복하기 위해 카메라 비전 센서의 연구가 진행되고 있다. 비전 센서는 객체 트랙킹을 통해 정지된 사람을 검출한다. 그러나 객체 트랙킹은 트랙커 표류가 발생하는 문제점이 있다. 본 논문에서는 정지 트랙커가 사람을 포함하는지의 여부를 판단하기 위하여 합성곱 신경망 기반 사람 인식 기법을 제안한다. 실험에서는 카메라로 획득한 영상에 제안 방법을 적용한 결과 약 88%의 정확도로 사람과 비사람이 분류가 되어 실제 점유센서에 활용이 가능하다는 것을 증명하였다.

Keywords

References

  1. P. Liu et al. "Occupancy inference using pyroelectric infrared sensors through hidden markov model", IEEE Sensors Journal, 16(4), Feb. 2016.
  2. F. Wahl, M. Milenkovic, and O. Amft, "A distribted PIR-based approach for estimating people count in office environments", IEEE conf on Computational Science and Engineering, 2012.
  3. Y. Benezeth et al. "Towards a sensor for detecting human presence and characterizing activity", Energy and Buildings, 43, 2011.
  4. J. Han and B. Bhanu, "Fusion of color and infrared video for moving human detection", Pattern Recognition, 40, 2007.
  5. S. Nakashima, Y. KItazono, L. Zhang, and S. Serikawa. "Development of privacy-preserving sensor for person detection," Procedia, 2, 2010.
  6. I. Amin, A. Taylor, F. Junejom, A. Al-Habaibeh, and R. Parkin, "Automated people-counting by using low-resolution infrared and visual cameras", Measurement, 41, 2008.
  7. A. Bobick and J. Davis, "The recognition of human movement using temporal templates," IEEE Trans. Pattern Recognition and Pattern Analysis, Vol 23, No. 3, Mar. 2001.
  8. A. L. Maas, A. Y. Hannun, A. Y. Ng, "Rectifier Nonlinearities Improve Neural Network Acoustic Models," Proc. of the 30th Int. Conf. on Machine Learning, Atlanta, USA, June 2013.
  9. X. Glorot and Y. Bengio, "Understanding the difficulty of training deep forward neural networks", Int' Conf. Artificial Intelligence and Statistics, Society for Artificial Intelligence and Statistics, 2010.
  10. J. Gil and M. Kim, "Real-time People Occupancy Detection by Camera Vision Sensor", Journal of Broadcast Engineering, Vol 22, No. 6, Nov. 2017.
  11. T. Tian, R. Schmidt, H. Liu, A. Hampapur, and M. T. Sun, "Robust Detection of Abandoned and Removed objects in complex surveillance videos," IEEE Trans. Sym. Man and Cybernetics - Part C: Applications and Reviews, Vol. 41, No. 5. pp. 565-577, Sep. 2011. https://doi.org/10.1109/TSMCC.2010.2065803
  12. C-C. Chang and C-J. Lin, "LIBSVM: A library for support vector machines", ACM Tran. on Intelligent Systems and Technology, Vol 2, No. 3, pp. 27:1-27:27, 2011