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ABSTRACT

Augmented reality (AR) has tremendous potential in visualizing geospatial information, especially
on the actual physical scenes. However, to utilize augmented reality in mobile system, many
researches have undergone with GPS or ubiquitous marker based approaches. Although there are
several papers written with vision based markerless tracking, previous approaches provide fairly
good results only in largely under “controlled environments.” Localization and tracking of current
position become more complex problem when it is used in indoor environments. Many proposed
Radio Frequency (RF) based tracking and localization. However, it does cause deployment problems
of large RF-based sensors and readers. In this paper, we present a noble markerless AR approach
for indoor (possible outdoor, too) navigation system only using monoSLAM (Monocular Simul-
taneous Localization and Map building) algorithm to full-fill our grand effort to develop mobile
seamless indoor/outdoor u-GIS system. The paper briefly explains the basic SLAM algorithm, then
the implementation of our system.

Keywords : Augmented Reality (AR), Mobile, indoor localization and tracking, Hand-held, u-GIS,
SLAM (Simultaneous Localization and Map building), USB camera, UMPC, GIS
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1. Background

Even with the advent of the civilian GPS
technologies recently, the indoor location tracking
has been a “grey-area” for the research community.
Since there is no possible, at least currently,
method to access GPS from indoor space, some
researches have been focusing on different methods,
mostly with Radio Frequency (RF) based and
few with motion sensor based approaches.

Systems like Active-Bat [1] developed by AT&T
and Cricket [2] use ultrasound time of flight
measurements, others like Active-Badge [3] use
small infrared tags that provide symbolic infor-
mation, like a name of a room. Infrared has
limited range hence it has not become very popular.
PinPoint 3D [4] uses radio frequency lateration
to provide an accuracy of three meters and requires
a special developed infrastructure. SpotON [5]
and UOID [6] projects developed a 3D and 2D
location, respectively, system using RFID tags.
Kang et al. also recently attempted to guide
automobiles’ 2D parking path based on RFID
[7]. SmartFloor [8] uses a sensor grid installed
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on a floor and the accuracy depends of the
sensor spacing distance.

These systems require a special infrastructure
that needs to be deployed. This is an obvious
disadvantage. Systems that do not require a special
developed infrastructure take advantage of an
existing and well defined telecommunication net-
work, like cellular or WiFi networks. Cellular
networks, like GSM and 3G/UMTS, can provide,
with minimal cost, the user current cell identifi-
cation. The accuracy of this solution depends
mostly on the size and density of cells. In urban
environments, there is a much better accuracy
since more base stations are installed. Signal
triangulation is also possible, using the different
radio signals from the different base stations
[91.

Knowing on which base station the client is
connected can also be applied to wireless LANs.
This kind of information can be used to locate
a wireless client within the access point coverage
area.

Implementing a location system using WLAN
communication infrastructure has been for some

time target of intensive research. Various appro-
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aches have been proposed, mostly based on the
received signal strength. One of the first systems
to be introduced was RADAR, developed by
Microsoft Research Group [10].

RADAR uses received radio strength to map
the user current location and it uses an empirical
model (K-Nearest Neighbor) as well as a simple
signal propagation model. The accuracy of this
system is about four meters for 75% of the time
and it uses special developed access points. R.
Battiti e al. describe a system capable of deriving
the location using neural networks [11]. In this
work it is described the training phase, always
present in a RF fingerprinting based system, and
the neural network architecture used [120].

Despite the accuracy (about 2.3 meters), the
results are only compared to test data and infor-
mation about software developed, radio strength
reading method and system architecture is in
existent. M. D. Rodriguez et al. [13] also describe
a location system for hospital services based on
a neural network. In this work the SNR is used
to calculate the user position and all the pro-
cessing is done in the wireless client. Their
results show an error below 4 meters 90% of
the time.

Bayesian models are also used to calculate a
wireless device position, D. Madigan et al. [14]
propose a system with an accuracy of four meters.
A. Haeberlen ef al. [15] describe a probabilistic
approach and their location system provides sym-
bolic information, like the office number inside
a building.

As explained above, RF based indoor location

tracking is favored from many research projects.

However, there are some limitations on deploying
RF based solutions. 1) The resolution of tracking
is quite sparse. The tracking ranges are from
5m to 10m depends on the technology. 2) Since
RF based sensors are physically installed in the
sites, to achieve more dense resolution, more
hardware sensors and reader (active readers) must
be in place beforehand. 3) When they localize
the tracking targets, it is only possible to track
2 dimensional location. It’s quite difficult to
determine the users (one with active readers or
beacons) relative position to the sensors.
Because of various problems mentioned above,
we now present a noble way to overcome the

problems

2. Introduction

SLAM (Simultancous Localization and Mapping)
is a well defined and used approach in the
robotic community for constructing a representation
of the environment on the fly and estimating
robot motion. SLAM is mainly accomplished by
using modern methods of sequential Bayesian
inference and normally uses sensors such as
laser range-finders and sonar. MonoSLAM was
created based on the probabilistic SLAM metho-
dology using a single freely moving wide-angle
camera as the only sensor and with a realtime
constraint [16].

The MonoSLAM algorithm runs at 30 frames
per second (fps), estimates camera pose and creates
a sparse map of the environment natural land-

marks. It is a very efficient algorithm with a
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low level of jitter (1-2 cm) and drifi-free, while
being robust to handle extreme rotation, occlusion
and closed loop. However, it is restricted to
indoor environments, smooth camera movement
and monochrome camera image.

To initialize the system, a known picture is
necessary to be present in the initial frame at an
approximated certain distance. The algorithm
begins searching for features in the image utilizing
the image interest operator of Shi and Tomasi
[17] to locate the best candidate within a limited
window of 80x60 pixels. This window is randomly
positioned in any area that does not contain other
features nor will be out of the camera view,
based on the current camera and angular velocities.

When good features are selected, the algorithm
estimates its depth and associates it with a level
of uncertainty. As the feature continues to be
tracked in the next frames, the depth estimation
is enhanced and the feature is fully initialized
and stored as an oriented planar texture of 11x
11 pixels. It utilizes the Davison and Murray’s
approach, which relies on visual landmarks, as
they have more unique signatures than standard
comer features [18]. The tracking of each feature
occurs within an ellipse region, and shape and
position in the image are defined based on its
level of uncertainty and on the camera estimated
movement, respectively.

The features are inserted in a probabilistic
feature based map that is maintained during all
the lifetime of the operation and is updated by
the Extended Kalman Filter (EKF). The map
grows as new features are added, or shrinks when
a feature that fails to be detected many times is

removed.

The MonoSLAM technique was used in an
AR scenario where virtual furniture is added to
an image stream captured by a handheld camera.

3. System Design

In there previous research, Davison et al has
been using a wide-angle IEEE 1394 cameras
connected to the computer [19]. The throughput
of IEEE 1394 camera data transfer rate is quite
steady. Also, since it has a wide-angle optics,
the processing software has luxury of seeing wider
scenes with more feature points overlapped.

Nevertheless, using IEEE 1394 on most of
hand-held devices would be a problem. Most
IEEE 1394 cameras are using a 6-circuit Fire-
wire 400 (IEEE 1394) alpha connector which
draws power from the host computer (Figure 2).
Unfortunate, because of its power constraints,
most off-the-shelf mobile computers (including
most laptop computers) only support IEEE 1394a,
4-circuit alpha connector, developed by Sony
and already widely in use. Since the 4-circuit

connector does not support the power, additional

Figure 11’A 6—circuit FireWire 400 Alpha
connector
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o

Figure 2. The System: UMPC with USB
Camera

power sources must be supplied to the IEEE
1394 cameras. [20]

This limitation forces us to use USB 2.0
cameras connected to a hand-held devices. (or
embedded cameras) On the current implementation,
Logitech Qucikcam IM (USB 2.0) was used for
the image acquisition. Although USB 2.0 nominally
runs at a higher signaling rate (480 Mbit/sec)
than FireWire 400, typical USB PC- hosts rarely
exceed sustained transfers of 280 Mbit/sec. This
is likely due to USB’s reliance on the host-

processor to manage low-level USB protocol,

whereas FireWire delegates the same tasks to.

the interface hardware.

To overcome the limitation, some part of algo-
rithm had to be minimized and optimized for
the hand-held device. For the hand-held device,
we used SONY VGN-UXS58LN UMPC (Ultra
Mobile PC). The system runs on Intel Core2 Solo
U2200 with 1.2Ghz clock speed. (Figure 2)

3.1 Camera Tracking

As i Davison’s original work [21], our
system maintains an estimate of the current camera
pose/motion parameters and 3D scene points.
Their respective means are x,, i, and a covariance

matrix, P, encodes Gaussian uncertainty as well

as correlation between measurements and camera
parameters.

The system is initialized with a set of four
known points. Image patches are used as feature
descriptors and measurements are made by per-
forming normalized cross correlation between a
template image patch and the current image in a
search window around the predicted feature position.
When no features are present in part of the
current image, new features are added at positions
that have a high response to the corner detector.

To improve feature measurements over large
changes in viewing configuration, we have incor-
porated Molton’s locally planar patch features
[22], where each feature is assumed to be planar
and it’s template is pre-warped based on an
estimated normal. Pre-warping patches significantly
improves the range of poses over which a
template can be matched, even when the normal
estimate is a coarse estimate (pointing directly
toward the camera when the feature is initi-
alized).

Experimentally, we have found the cost of
updating the normal estimate by image- align-
ment and Kalman-filtering to be too costly to
justify for the slight further improvement in
tracking. Therefore we don’t update the initial
normal estimates. To improve performance, instead
of performing cross correlation at every position
within the search window, we have limited the
measurement search to detected fast corners
[23]. In experiments, the use of these corners
reduces the number of correlations by approximately
85%, at a cost of 12% fewer matches, and a mean

measurement error increase of only 0.1 pixels.
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3.2 Keyframe Selection and Storage

The system deals with a large amount of raw
image data from the video stream, so memory
management becomes an issue. Images are stored
in three types of memory (texture, main, and
disk memory). As images are acquired by the
camera they are loaded into main memory.
When they are requested for texture mapping
they are loaded into texture memory and if they
are determined to be novel they are written to
disk. When storage exceeds a predefined quota
for main or texture memory, images are un-
loaded based on their distance from the current
virtual view. A frame is considered novel if it
has a sufficiently different position or orientation
from the closest saved frames. The score we use
for novelty incorporates the distance between frames
relative to the mean distance to the scene and
the angular difference between the principle viewing
rays of the new frame and nearby saved frames.

First we compute the Fuclidean distance between
the new camera center, ccnew, and each of the
saved camera center, cci, weighted by the inverse
mean depth to the scene points, X; (where j &
2 [1, m]), relative to the new camera.

dist(CCpew, CC;)
Ej (depthocn.., (X;)) /m)

d; =

If the minimum of this distance evaluated for
all saved cameras, min; (d;), is above a thres-
hold, a, we consider the frame novel (in our
experiments @ = 0.1 resulting in images approxi-
mately 10 ¢m apart when the mean depth of the

scene is 1m). If the minimum distance is below
then for each saved camera with d; < a we
compute the angular distance from it’s principle
viewing ray to that of the new frame. If the
maximum angular distance is above a second
threshold, 5 then we also consider the frame
novel (in our experiments 5 = w4 resulting in
images approximately 45° apart).

Camera pose parameters, Xy, from the tracking
system are stored along with each saved image.
Since SLAM only updates an estimate of the
current camera pose, over time old camera
estimates provided by the tracking system may
become invalid. As a result we intermittently
improve estimates by resectioning saved cameras
using all available 3D points and their 2D

measurements.

4. ARVisualizer : Software Design

ARVisualizer applies MonoSLAM algorithm
to compute camera’s 3D pose and at the same
time maintains a sparse map (represented by a
small amount of features) on the back stage.
After each step of updating the map status, it
visualizes the map and camera’s pose with
OpenGL and some other utilities.

Figure 3 depicts the general workflow of
ARVisualizer. The core of the diagram is the
spare map, which generally contains ~13 features.
The application works in the following way: On
the startup, application loads configuration (i.e.
default corner pattern model, camera parameters)
and initialize image/video grabbers. Before online
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Table 1. Major Modules and Descriptions

Main modules are listed in table 1

Math Library [24]

Matrix, algebra operation, etc

Image Processing library. [25]

Feature matching, detector, etc

3D drawing Utility

Primitives for drawing axis and setting up 3D environment. Also some
interfaces are defined in VWGLOW and SceneLib

Image/video acquisition

Interfaces to read images or live stream from capture device

MonoSLAM algorithm

including EKF-based SLAM algorithm and feature matching with active vision

OpenGL utilities

OpenGL extensions

GUI

Button control and display panels

running, initialize the map with fixed patterns at
a known distance (e.g. black and white papers
in a fixed distance). Some features are auto-
matically detected and initialized with the default
corner pattern and the distance in order to get a
initial map of the environment.

When online, map is updated when new image
data arrives. It follows an EKF-based approach
— estimate, observe and update. That is, firstly,
estimating the next position of camera based on
current map and camera’s motion model. Secondly,
matching and tracking features in the new
arriving image. And, finally, updating map by
synthesizing the features locations and camera’s
position.

Update the GUI to display the movement of
features and changes of camera’s position. Map

Capture
Device

¥

information is refreshed with the feature positions
as well as their confidence area. Overlay AR

model on the map at specified feature.

5. ARVisualizer : Code Structure

5.1 Initialization

To initialize the system, the following steps
must be taken. First, MonoSLAM class in mono-
slamh must be loaded for the configuration.
MonoSLAM::Auto Initialize Features in mono-
slam h, then automatically detects features. Finally
nonoverlappingregion.h, Scenelmproc (SceneLib
scene_single.hy Initializes maps by detecting and
matching the flow of features

Pre-defined | comer | . . 1 .
Mmm Initialization

image F'?s:gfe——b AR Model
A
» Map » GU}
L]

Figure 3. Workflow of the ARVisualizer Software
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5.2 Image/video acquisition

As showed in Figure 4.1, The capture device
works in a push mode - read data from devices
at a fixed time interval controlled by a thread
monitor. Capture devices are all derived from
SequeceBase, which defines control interfaces
such as “Next”, “Continue”, “Stop”, and the
different behaviors among devices are resort to
the specific driver.

Take USBCamGlow (SequencerUSBCam Glow,
SequencerDXCam in Figure 5, 6) for example,
it overrides interfaces in SequenceBase by calling
customized driver for capturing video stream
with DirectShow

Thread

SequenceBase

FileGlow FireWireGlow USBCamGlow

Figure 4. Diagram of Capture Device

ushEuttonMessages.>
% Fields |
= Methods

4% ArrangeButtons

% OnMessage
“%  SeguencerSBCamGlow

Figure 5. Inheritance tree of
SequencerUSBCam Glow

5.3 SceneLib

SceneLib implements MonoSLAM algorithm,
defining some important classes and structures,
such as MonoSLAM, scene single, Kalman, Feature,
etc. ARVisualizer uses Glow to manage window
operation and encapsulates all the 3D rendering
operations in ThreedToolGlCommon and Threed
ToolGl Widget which manage window system
(display, user interaction, etc).

The two display windows in main GUI is
inherited from ThreedToolGIWidget. Also, AR
or other image rendering operations could be
done in either ThreedToolGICommon or Threed-
Tool GlWidget.

5.4 3D Display (in VWGL and VWGLOW)

ARVisualizer uses Glow to manage window
operation and encapsulates all the 3D rendering
operations in ThreedToolGICommon and Threed-
ToolGl Widget which manage window system
(display, user interaction, etc). The two display
windows in main GUI is inherited from Threed-
ToolGIWidget. Also, AR or other image rendering
operations could be done in either ThreedTool-
GlCommon or ThreedToolGiWidget. (Firgure 6)

5.5 Main GUI (in MonoSLAMGLow)

Two classes are implemented to deal with 3D
display, user interaction and image capture. Mono-
SLAMControl is a wrapper for capture device
and manages all the buttons in the control panel.

The specified device used could be configured
with certain MACRO (_IMGFILE , USBCAM ,
etc) in the development environment.

In logic, MonoSLAMControl is created when
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ARVisualizer is loaded, and it keeps a pointer
to MonoSLAMGlow class. So that, whenever a
button is pressed or triggered, MonoSLAM-
Control will broadcast the button event to Mono
SLAMGlow to process The specified device
used could be configured with certain MACRO
( IMGFILE , USBCAM , etc) in the develop-

Methods
MakeCurrent
OnBeginePaint
OnEndPaint
OnMessage
OnMouseDown
OnMouseDrag
OnMouseUp
RequestDraw
SwapBuffers
ThreeDToolGlowWidget

Methods

_CallDrawEvent

_CallProcessHitsEvent
~ThreeDToolGLCommon
ActuallyDrawDistortedTexturedRectangle
ActuallyDrawTexturedRectangle
ActuallyDrawWarpedTexturedRectangle
CameraHeight

CameraWidth

Clear

Clicked

DisableLighting

DoDrawing

Dragging

DragRelease

Draw2DArrow (+ 3 overloads)
Draw2DBegin

Draw2DCircle ( + 1 overload)
Draw2DCovariance ( + 1 overload)
Draw2DDashedLine ( + 1 overload)
Draw2DEnd

Draw2DText
Draw2DTexturedRectangle ( + 1 overload)
DrawAxes

Figure 6. 3D Drawing Widget Classes

A Markerless Augmented Reality Approach for Indoor Building Information Visualization System

ment environment

In logic, MonoSLAMControl is created when
ARVisualizer is loaded, and it keeps a pointer
to MonoSLAMGlow class. So that, whenever a
button is pressed or triggered, MonoSLAM-
Control will broadcast the button event to
MonoSLAMGIow to process.

On the other hand, MonoSLAMGlow is the
display window, consisting two papels — 3D
map panel and VR (virtual reality) panel. 3D
map panel displays the feature and camera’s
positions in 3D coordinates, while VR panel
renders image and AR model.

Important rendering functions such as Rectified-
Internal3DDraw, Rawlnternal3D Draw, are defined
in SceneLib /MonoSLAM/threedDraw. cpp. AR
models could be overlayed on specific features

by modifying these interfaces.

6. Conclusion

In this paper, we have implemented a Mono-
SLAM based Augmented Reality for the
computationally limited hardware devices. To
accomplish that, we develop a noble method to
optimize the algorithm so that an off-the-shelf
narrow angle USB camera can be connected on
the UMPC. We have demonstrated that merging
collada/KML based 3D objects on incoming
video scenes, as well as text annotations freely
on the 3D space.(Figure 7) Still, however, the
implementation is on Intel Core2 Solo which
has only a single core.

Finally, we have found that if we can utilize
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Figure 7. Implementation Results: (From left to right) {1) Initialization of 3D map building,

(2) Free space text annotations, {3) 3D Collada Image overplayed on the 3D space.

multi-core architecture; separating tracking and
map building on different threads, we can
increase the performance of the system signifi-
cantly by using dense map, instead of using a
sparse map in this implementation. [26]
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