• Title/Summary/Keyword: 치료계획시스템

Search Result 264, Processing Time 0.036 seconds

The comparison of treatment planning between stereotactic radiosurgery planning systems (정위방사선수술 치료계획시스템간의 치료계획비교)

  • 김기환;조문준;김재성;김준상;신교철;김진기;오영기;정동혁;김정기
    • Progress in Medical Physics
    • /
    • v.12 no.2
    • /
    • pp.171-175
    • /
    • 2001
  • We analyze the relation of dose volume histogram, conformity index and homogeneity index based on RTOG9005 for treatment planning result between framed based stereotactic radiosurgery(SRS) system and frameless SRS/T system to verify the difference of two systems in the intracranial target. There is same treatment planning result by two treatment planning systems.

  • PDF

The dosimetric impact on treatment planning of the Dynamic MLC leaf gap (동적 다엽콜리메이터의 Leaf gap이 전산화 치료계획에 미치는 영향)

  • Kim, Chong Mi;Yun, In Ha;Hong, Dong Gi;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.233-238
    • /
    • 2014
  • Purpose : The Varian's Eclipse radiation treatment planning system is able to correct radiation treatment thought leaf gap which is limitation MLC movement for collision with both MLC. In this study, I'm try to analyze dosimetric effect about the leaf gap in treatment planning system. And then apply to clinical implement. Materials and Methods : The Elclipse version is 10.0. In general, the leaf gap set to 0.05~0.3 mm and must measurement each leaf gap. The leaf gap measured by each LINACs and photons. We applied to measured each leaf gap in IMRT and VMAT. Changing the leaf gap, we evaluated treatment plans by Dmax, CI, etc. Results : When the same plan was evaluated with changing the leaf gap, an increase of 2-5% over the value Dmax, CI increases mm to 0.0~0.50 mm leaf gap. Volumetric modulated and intensity modulated radiation therapy plans all showed the same trend was not found significant between each radiation treatment planning. Conclusion : Generally, the leaf gap setting has a unique measure of the Multileaf collimator. However, the aging of the Multileaf collimator, calibration, and can be changed, after inspection and repair of the lip gap should eventually because these values affect the treatment plan must be applied to the treatment after confirmation. In some cases, may be to maintain the initial setting value of the lip gap, which is undesirable because it can override the influence on the treatment plan.

The Availability of the step optimization in Monaco Planning system (모나코 치료계획 시스템에서 단계적 최적화 조건 실현의 유용성)

  • Kim, Dae Sup
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.207-216
    • /
    • 2014
  • Purpose : We present a method to reduce this gap and complete the treatment plan, to be made by the re-optimization is performed in the same conditions as the initial treatment plan different from Monaco treatment planning system. Materials and Methods : The optimization is carried in two steps when performing the inverse calculation for volumetric modulated radiation therapy or intensity modulated radiation therapy in Monaco treatment planning system. This study was the first plan with a complete optimization in two steps by performing all of the treatment plan, without changing the optimized condition from Step 1 to Step 2, a typical sequential optimization performed. At this time, the experiment was carried out with a pencil beam and Monte Carlo algorithm is applied In step 2. We compared initial plan and re-optimized plan with the same optimized conditions. And then evaluated the planning dose by measurement. When performing a re-optimization for the initial treatment plan, the second plan applied the step optimization. Results : When the common optimization again carried out in the same conditions in the initial treatment plan was completed, the result is not the same. From a comparison of the treatment planning system, similar to the dose-volume the histogram showed a similar trend, but exhibit different values that do not satisfy the conditions best optimized dose, dose homogeneity and dose limits. Also showed more than 20% different in comparison dosimetry. If different dose algorithms, this measure is not the same out. Conclusion : The process of performing a number of trial and error, and you get to the ultimate goal of treatment planning optimization process. If carried out to optimize the completion of the initial trust only the treatment plan, we could be made of another treatment plan. The similar treatment plan could not satisfy to optimization results. When you perform re-optimization process, you will need to apply the step optimized conditions, making sure the dose distribution through the optimization process.

Evaluation of Dosimetric Leaf Gap (DLG) at Different Depths for Dynamic IMRT (동적 세기조절방사선치료에서 깊이에 따른 DLG변화 분석)

  • Chang, Kyung Hwan;Kwak, Jungwon;Cho, Byungchul;Jeong, Chiyoung;Bae, Jae Beom;Yoon, Sang Min;Lee, Sang-wook
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.153-159
    • /
    • 2015
  • This study is to evaluate thedosiemtric leaf gap (DLG) at different depths for dynamic intensity-modulated radiation therapy (IMRT) in order to evaluate the absolute dose and dose distribution according to the different positions of tumors and compare the measured and planned the multileaf collimator (MLC) transmission factor (T.F.) and DLG values. We used the 6 MV and 15 MV photon beam from linear accelerator with a Millenium 120 MLC system. After the import the DICOM RT files, we measured the absolute dose at different depths (2 cm, 5 cm, 10 cm, and 15 cm) to calculate the MLC T. F. and DLG. For 6 MV photon beam, the measured both MLC T. F. and DLG were increased with the increase the measured depths. When applying to treatment planning systemas fixed transmission factor with its value measured under the reference condition at depth of 5 cm, although the difference fixed and varied transmission factor is not significant, the dosiemtric effect could be presented according to the depth that the tumor is placed. Therefore, we are planning to investigate the treatment planning system whichthe T. F. and DLG factor according to at the different depths can be applied in the patient-specific treatment plan.

Dose Evaluation of TPS according to Treatment Sites in IMRT (세기조절방사선치료 시 치료 부위에 따른 치료계획 시스템 간 선량평가)

  • Kim, Jin Man;Kim, Jong Sik;Hong, Chae Seon;Park, Ju Young;Park, Su Yeon;Ju, Sang Gyu
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.181-186
    • /
    • 2013
  • Purpose: This study executed therapy plans on prostate cancer (homogeneous density area) and lung cancer (non-homogeneous density area) using radiation treatment planning systems such as $Pinnacle^3$ (version 9.2, Philips Medical Systems, USA) and Eclipse (version 10.0, Varian Medical Systems, USA) in order to quantify the difference between dose calculation according to density in IMRT. Materials and Methods: The subjects were prostate cancer patients (n=5) and lung cancer patients (n=5) who had therapies in our hospital. Identical constraints and optimization process according to the Protocol were administered on the subjects. For the therapy plan of prostate cancer patients, 10 MV and 7Beam were used and 2.5 Gy was prescribed in 28 fx to make 70 Gy in total. For lung cancer patients, 6 MV and 6Beam were used and 2 Gy was prescribed in 33 fx to make 66 Gy in total. Through two therapy planning systems, maximum dose, average dose, and minimum dose of OAR (Organ at Risk) of CTV, PTV and around tumor were investigated. Results: In prostate cancer, both therapy planning systems showed within 2% change of dose of CTV and PTV and normal organs (Bladder, Both femur and Rectum out) near the tumor satisfied the dose constraints. In lung cancer, CTV and PTV showed less than 2% changes in dose and normal organs (Esophagus, Spinal cord and Both lungs) satisfied dose restrictions. However, the minimum dose of Eclipse therapy plan was 1.9% higher in CTV and 3.5% higher in PTV, and in case of both lungs there was 3.0% difference at V5 Gy. Conclusion: Each TPS according to the density satisfied dose limits of our hospital proving the clinical accuracy. It is considered more accurate and precise therapy plan can be made if studies on treatment planning for diverse parts and the application of such TPS are made.

  • PDF

고체 팬톰을 이용한 방사선치료계획시스템의 정도관리

  • 이상훈;조광환;조삼주;최진호;추성실;권수일;신동오
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.65-65
    • /
    • 2003
  • 목적 : 방사선치료기술이 날로 발전함에 따라 방사선치료계획시스템에 대한 주기적인 정도관리의 필요성은 증대하고 있으나, 국내 실정에 적합한 표준화된 정도관리절차서가 없는 실정이다. 따라서 본 연구에서는 방사선치료계획용 시스템에 대한 정도관리용 고체팬톰을 제작하여 주기적인 정도관리 활용 및 절차서를 제시하고자 한다. 대상 및 방법 : 체윤곽 보정을 위한 삼각기둥 모형 (30cm$\times$30cm$\times$5cm, 30cm$\times$15cm$\times$5$\times$) 및 정형ㆍ부정형, 불균질 측정이 가능한 물등가고체팬톰을 제작하였고, 컴퓨터단층촬영(AcQsim)을 통해 영상을 얻었으며, RTPS(AcQplan)에 입력하여 영상 내 기준점에서의 선량값을 계산하였다. RTPS를 통해 계산된 값의 평가를 위해 동일한 조건하에서 각 기준점에 대한 실제 측정을 이온함을 이용하여 측정하였다. 평가 항목으로는 정방형 조사면, 부정형 조사면, 쐐기 조사면, 불균질 물질 보정, 사방향 조사 등에 대해서 알고리즘별로 수행하였다. 결과 : RTPS를 이용하여 계산된 값과 실제 측정한 값을 비교하여 RTPS의 정확성을 평가한 결과로 합성의 불확도 허용 기준 (3%), 선속 중심축 상에서의 허용 기준 (2%) 등, 선진 각국 및 각 학회에서 권고하고 있는 허용 범위 내에서 잘 일치하였다. 결론 : RTPS는 측정된 심부선량과 선량분포 등 물리적인 인자에 의존하는 제한성이 있고, 실제로 선량계산 알고리즘과 기하학적 변화에 따라 계산값과 측정값 간에 차이가 발생할 수 있었다. 실제 인체의 체윤곽 불균일성과 불균질성을 모사한 팬톰을 제작하여 이용함으로써 다양한 RTPS간의 비교를 통한 치료 선량의 정확성을 평가하고, 방사선 치료의 원활하고 정확한 수행을 위해 실용적이고, 보편적인 치료계획 시스템의 정도관리 방법과 절차서를 수립하는데에 유용할 것으로 사료된다.

  • PDF

Quality Assurance on Dose Distribution of Ir-192 Line Source (Ir-192 선 선원의 선량분포에 관한 품질보증)

  • Kim, Jong-Eon
    • Journal of radiological science and technology
    • /
    • v.30 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • The propose of this study is a verification of the correct calculation of the dose around source and the prescription dose of Ir-192 source in the plato treatment planning system. The source and orthogonal coordinates for lateral direction and those for the anterior posterior direction were drawn on a A4 paper and then input into the system. The prescription dose was prescribed to two points with radius 1 cm in the direction of polar angle $90^{\circ} and $270^{\circ} from the center of the source. The doses of prescription point and dose points acquired from the treatment planning system were compared with those from manual calculation using the geometry function formalism derived by Paul King et al. In this analysis, the doses of prescription point were exactly consistent with each other and those of dose points were obtained within the error point of 1.85%. And the system of accuracy was evaluated within 2% of tolerance error. Therefore, this manual dose calculation used for the geometry function formalism is considered to be useful in clinics due to its convenience and high quality assurance.

  • PDF

Radiation dose plan system based on particle simulation and volume rendering (입자 시뮬레이터와 볼륨 렌더링 기반의 방사선조사계획 시스템)

  • Kim, A-Mi;Kim, Seung-Wan;Song, Ju-Whan;Gwun, Ou-Bong;Kim, Chong-Yeal;Hong, Seung-Woo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.12 no.3
    • /
    • pp.21-26
    • /
    • 2006
  • 악성 종양은 현대인을 괴롭히는 대표적인 질병의 하나로 이를 치료하는데 흔히 이용되는 것이 방사선치료이다. 방사선 치료에서는 종양세포만을 찾아 방사선을 조사하는 것이 무엇보다 중요하다. 본 논문에서는 입자 시뮬레이터 Geant4와 볼륨렌더링을 이용하여 이러한 것을 가능하게 하는 방사선조사계획시스템을 제안하고 시스템의 논리적 구조와 구현 시 고려할 사항에 대하여 알아본다. 본 시스템은 Geant4에 있는 다양한 물리(physics)이론을 적용하여 방사선의 물성을 다양하고 정확하게 시뮬레이션 하고, 시뮬레이션으로 구한 방사선량 분포를 볼륨렌더링으로 생성한 영상과 함께 표시하여 사용자가 방사선 치료 계획을 용이하게 세울 수 있도록 한다.

  • PDF

Evaluation of Ovary Dose of Childbearing age Woman with Breast cancer in Radiation therapy (가임기 여성의 방사선 치료 시 난소 선량 평가)

  • Park, Sung Jun;Lee, Yeong Cheol;Kim, Seon Myeong;Kim, Young Bum
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.145-153
    • /
    • 2021
  • Purpose: The purpose of this study is to evaluate the ovarian dose during radiation therapy for breast cancer in women of childbearing age through an experiment. The ovarian dose is evaluated by comparing and analyzing between the calculated dose in the treatment planning system according to the treatment technique and the measured dose using a thermoluminescence dosimeter (TLD). The clinical usefulness of lead (Pb) apron is investigated through dose analysis according to whether or not it is used. Materials and Methods: Rando humanoid phantom was used for measurement, and wedge filter radiation therapy, 3D conformal radiation therapy, and intensity modulated radiation therapy were used as treatment techniques. A treatment plan was established so that 95% of the prescribed dose could be delivered to the right breast of the Rando humanoid phantom 3D image obtained using the CT simulator. TLD was inserted into the surface and depth of the virtual ovary of the Rando hunmanoid phantom and irradiated with radiation. The measurement location was the center of treatment and the point moved 2 cm to the opposite breast from the center of the Rando hunmanoid phantom, 5cm, 10cm, 12.5cm, 15cm, 17.5cm, 20cm from the boundary of the right breast to the center of treatment and downward, and the surface and depth of the right ovary. Measurements were made at a total of 9 central points. In the dose comparison of treatment planning systems, two wedge filter treatment techniques, three-dimensional conformal radiotherapy, and intensity-modulated radiation therapy were established and compared. Treatments were compared, and dose measurements according to the use of lead apron were compared and analyzed in intensity-modulated radiation therapy. The measured value was calculated by averaging three TLD values for each point and converting using the TLD calibration value, which was calculated as the point dose mean value. In order to compare the treatment plan value with the actual measured value, the absolute dose value was measured and compared at each point (%Diff). Results: At Point A, the center of treatment, a maximum of 201.7cGy was obtained in the treatment planning system, and a maximum of 200.6cGy was obtained in the TLD. In all treatment planning systems, 0cGy was calculated from Point G, which is a point 17.5cm downward from the breast interface. As a result of TLD, a maximum of 2.6cGy was obtained at Point G, and a maximum of 0.9cGy was obtained at Point J, which is the ovarian dose, and the absolute dose was 0.3%~1.3%. The difference in dose according to the use of lead aprons was from a maximum of 2.1cGy to a minimum of 0.1cGy, and the %Diff value was 0.1%~1.1%. Conclusion: In the treatment planning system, the difference in dose according to the three treatment plans did not show a significant difference from 0.85% to 2.45%. In the ovary, the difference between the Rando humanoid phantom's treatment planning system and the actual measured dose was within 0.9%, and the actual measured dose was slightly higher. This did not accurately reflect the effect of scattered radiation in the treatment planning system, and it is thought that the dose of scattered radiation and the dose taken by CBCT with TLD inserted were reflected in the actual measurement. In dosimetry according to the with or without a lead apron, when a lead apron was used, the closer the distance from the treatment range, the more effective the shielding was. Although it is not clinically appropriate for pregnancy or artificial insemination during radiotherapy, the dose irradiated to the ovaries during treatment is not expected to significantly affect the reproductive function of women of childbearing age after radiotherapy. However, since women of childbearing age have constant anxiety, it is thought that psychological stability can be promoted by presenting the data from this study.

A Study of a Non-commercial 3D Planning System, Plunc for Clinical Applicability (비 상업용 3차원 치료계획시스템인 Plunc의 임상적용 가능성에 대한 연구)

  • Cho, Byung-Chul;Oh, Do-Hoon;Bae, Hoon-Sik
    • Radiation Oncology Journal
    • /
    • v.16 no.1
    • /
    • pp.71-79
    • /
    • 1998
  • Purpose : The objective of this study is to introduce our installation of a non-commercial 3D Planning system, Plunc and confirm it's clinical applicability in various treatment situations. Materials and Methods : We obtained source codes of Plunc, offered by University of North Carolina and installed them on a Pentium Pro 200MHz (128MB RAM, Millenium VGA) with Linux operating system. To examine accuracy of dose distributions calculated by Plunc, we input beam data of 6MV Photon of our linear accelerator(Siemens MXE 6740) including tissue-maximum ratio, scatter-maximum ratio, attenuation coefficients and shapes of wedge filters. After then, we compared values of dose distributions(Percent depth dose; PDD, dose profiles with and without wedge filters, oblique incident beam, and dose distributions under air-gap) calculated by Plunc with measured values. Results : Plunc operated in almost real time except spending about 10 seconds in full volume dose distribution and dose-volume histogram(DVH) on the PC described above. As compared with measurements for irradiations of 90-cm 550 and 10-cm depth isocenter, the PDD curves calculated by Plunc did not exceed $1\%$ of inaccuracies except buildup region. For dose profiles with and without wedge filter, the calculated ones are accurate within $2\%$ except low-dose region outside irradiations where Plunc showed $5\%$ of dose reduction. For the oblique incident beam, it showed a good agreement except low dose region below $30\%$ of isocenter dose. In the case of dose distribution under air-gap, there was $5\%$ errors of the central-axis dose. Conclusion : By comparing photon dose calculations using the Plunc with measurements, we confirmed that Plunc showed acceptable accuracies about $2-5\%$ in typical treatment situations which was comparable to commercial planning systems using correction-based a1gorithms. Plunc does not have a function for electron beam planning up to the present. However, it is possible to implement electron dose calculation modules or more accurate photon dose calculation into the Plunc system. Plunc is shown to be useful to clear many limitations of 2D planning systems in clinics where a commercial 3D planning system is not available.

  • PDF