The Availability of the step optimization in Monaco Planning system

모나코 치료계획 시스템에서 단계적 최적화 조건 실현의 유용성

  • Kim, Dae Sup (International ST. mary's Hospital, Department of Radiation Oncology)
  • 김대섭 (국제성모병원 방사선종양학과)
  • Received : 2014.09.30
  • Accepted : 2014.12.02
  • Published : 2014.12.30

Abstract

Purpose : We present a method to reduce this gap and complete the treatment plan, to be made by the re-optimization is performed in the same conditions as the initial treatment plan different from Monaco treatment planning system. Materials and Methods : The optimization is carried in two steps when performing the inverse calculation for volumetric modulated radiation therapy or intensity modulated radiation therapy in Monaco treatment planning system. This study was the first plan with a complete optimization in two steps by performing all of the treatment plan, without changing the optimized condition from Step 1 to Step 2, a typical sequential optimization performed. At this time, the experiment was carried out with a pencil beam and Monte Carlo algorithm is applied In step 2. We compared initial plan and re-optimized plan with the same optimized conditions. And then evaluated the planning dose by measurement. When performing a re-optimization for the initial treatment plan, the second plan applied the step optimization. Results : When the common optimization again carried out in the same conditions in the initial treatment plan was completed, the result is not the same. From a comparison of the treatment planning system, similar to the dose-volume the histogram showed a similar trend, but exhibit different values that do not satisfy the conditions best optimized dose, dose homogeneity and dose limits. Also showed more than 20% different in comparison dosimetry. If different dose algorithms, this measure is not the same out. Conclusion : The process of performing a number of trial and error, and you get to the ultimate goal of treatment planning optimization process. If carried out to optimize the completion of the initial trust only the treatment plan, we could be made of another treatment plan. The similar treatment plan could not satisfy to optimization results. When you perform re-optimization process, you will need to apply the step optimized conditions, making sure the dose distribution through the optimization process.

목 적 : 모나코 치료계획 시스템은 몬테카를로 알고리즘을 기반으로 선량을 구현하는 대표적인 시스템이다. 모나코 치료계획 시스템에서 치료계획 완성 후, 같은 조건으로 최적화를 재 실시하여 처음과는 다른 치료계획이 만들어질 때 본 연구는 이러한 차이를 줄이는 방법을 제시하고자 한다. 대상 및 방법 : 모나코 치료계획 시스템은 세기변조방사선치료나 용적변조방사선치료를 위한 역 선량계산을 실시할 때, 두 단계를 거쳐 최적화를 실시한다. 본 연구는 우선 최적화 두 단계를 모두 실시하여 선량으로 완성된 치료계획을, 최적화 조건을 바꾸지 않고 일반적인 1단계부터 2단계까지 순차적 최적화를 실시하였다. 이때 2단계에선 펜슬 빔과 몬테카를로 알고리즘을 각각 적용하여 실험을 실시하였다. 두 가지 알고리즘의 치료계획 모두 처음 완성된 치료계획과 최적화를 재 실시한 치료계획을 비교하고 선량 측정기를 이용하여 치료선량을 평가하였다. 두 번째는 초기 완성된 치료계획에 대하여 최적화를 재 실시할 때 단계적으로 실시하여 치료계획을 완성하고 선량을 측정하였다. 결 과 : 초기 완성된 치료계획에서 동일한 조건으로 일반적인 최적화를 다시 실시한 결과는 동일하지 않았다. 치료계획시스템의 비교에서 보면 유사한 선량-용적 히스토그람은 유사한 경향을 나타내지만 최고선량, 선량 균질도 및 제한 선량 등은 최적화 조건을 만족 시키지 못하는 다른 값을 보였다. 또한 선량측정비교에서도 20%이상 다르게 나타냈다. 또한 선량 알고리즘이 달라져도 다른 측정 값이 나왔다. 반면, 단계적 최적화를 실시 할 경우에는, 초기 치료계획과 비교하였을 때 종양 및 정상 장기의 선량 분포가 5% 이하의 차이를 보였다. 결 론 : 치료계획의 최적화 과정은 수 많은 시행 착오를 수행하며 궁극적인 해를 찾아가는 과정이다. 이때 초기 치료계획의 완성만을 신뢰하며 최적화를 실시하면 또 다른 치료계획이 만들어 질 수 있다. 유사한 경향을 보이긴 하지만, 반드시 최적화 조건을 만족한다고 볼 수 없기 때문에, 최적화 과정을 재 실시할 경우에는 반드시 단계적인 최적화 과정을 통하여 선량분포를 확인하면서 순차적으로 최적화 조건을 적용해야 할 것이다.

Keywords

References

  1. Verbakel WF, Cuijpers JP, Hoffmans D, Bieker M, Slotman BJ, Senan S. Volumetric intensity-modulated arc therapy vs. conventional IMRT in head-and-neck cancer: A comparative planning and dosimetric study. Int J Radiat Oncol Biol Phys. 2009;74:252-9. https://doi.org/10.1016/j.ijrobp.2008.12.033
  2. Anand AK, Jain J, Negi PS, Chaudhoory AR, Sinha SN, Choudhury PS, et al. Can dose reduction to one parotid gland prevent xerostomia-A feasibility study for locally advanced head and neck cancer patients treated with intensity-modulated radiotherapy. Clin Oncol (R Coll Radiol) 2006;18:497-504. https://doi.org/10.1016/j.clon.2006.04.014
  3. Lee TF, Chao PJ, Ting HM, Lo SH, Wang YW, Tuan CC, et al. Comparative analysis of SmartArc-based dual arc volumetric-modulated arc radiotherapy (VMAT) versus intensity-modulated radiotherapy (IMRT) for nasopharyngeal carcinoma. J Appl Clin Med Phys. 2011;12:3587.
  4. Holt A, Van Gestel D, Arends MP, Korevaar EW, Schuring D, Kunze-Busch MC, et al. Multi-institutional comparison of volumetric modulated arc therapy vs. intensity-modulated radiation therapy for head-and-neck cancer: A planning study. Radiat Oncol. 2013;8:26. https://doi.org/10.1186/1748-717X-8-26
  5. Vanetti E, Clivio A, Nicolini G, Fogliata A, Ghosh-Laskar S, Agarwal JP, et al. Volumetric modulated arc radiotherapy for carcinomas of the oro-pharynx, hypopharynx and larynx: A treatment planning comparison with fixed field IMRT. Radiother Oncol. 2009;92:111-7. https://doi.org/10.1016/j.radonc.2008.12.008
  6. B.B. Wu, F. Ricchetti and G. Sanguineti, Patient geometry-driven information retrieval for IMRT treatment plan quality control, Med. Phys. 36 (2009), 5497-5505. https://doi.org/10.1118/1.3253464
  7. P. Simari, B.B. Wu, R. Jacques et al., A statistical approach for achievable dose querying in IMRT planning, Medical Image Computing and Computer- Assisted Intervention-Miccai 2010, PT III, Lecture Notes in Computer Science, 2010, 521-528.
  8. X.F. Zhu, Y.R. Ge and T.R. Li, A planning quality evaluation tool for prostate adaptive IMRT based on machine learning, Med. Phys. 38 (2011), 719-726. https://doi.org/10.1118/1.3539749
  9. A. Fredriksson, Automated improvement of radiation therapy treatment plans by optimization under reference dose constraints, Physics in Medicine and Biology 57 (2012), 7799-7811. https://doi.org/10.1088/0031-9155/57/23/7799
  10. V. Chanyavanich, S.K. Das, W.R. Lee et al., Knowledge-based IMRT treatment planning for prostate cancer, Med. Phys. 38 (2011), 2515-2522. https://doi.org/10.1118/1.3574874
  11. Andrei Pugachev, Lei Xing : Incorporating prior knowledge into beam orientation optimization in IMRT. International Journal of Radiation Oncology * Biology * Physics 2002; 54 : 1565-1574. https://doi.org/10.1016/S0360-3016(02)03917-2
  12. Yin Zhang, Michael Merritt : Dose-volume-based IMRT fluence optimization: A fast least-squares approach with differentiability. Linear Algebra and its Applications 2008 ; 428 : 1365-1387. https://doi.org/10.1016/j.laa.2007.09.037
  13. Charles S Mayo, Marcia M Urie : A systematic benchmark method for analysis and comparison of IMRT treatment planning algorithms. Medical Dosimetry 2003 ; 28 : 235-242. https://doi.org/10.1016/j.meddos.2003.05.002
  14. Klaus Bratengeier, Matthias Guckenberger, Jurgen Meyer, et al.: A comparison between 2-Step IMRT and conventional IMRT planning. Radiotherapy and Oncology 2007 ; 84 : 298-306. https://doi.org/10.1016/j.radonc.2007.06.018
  15. Raef S. Ahmed, Roger Ove, Jun Duan, et al.: Intensitymodulated radiotherapy (IMRT) for carcinoma of the maxillary sinus: A comparison of IMRT planning systems. Medical Dosimetry 2006; 31 : 224-232. https://doi.org/10.1016/j.meddos.2005.08.006