Evaluation of Ovary Dose of Childbearing age Woman with Breast cancer in Radiation therapy

가임기 여성의 방사선 치료 시 난소 선량 평가

  • Park, Sung Jun (Department of Radiation Oncology, Korea University Guro Hospital) ;
  • Lee, Yeong Cheol (Department of Radiation Oncology, Korea University Guro Hospital) ;
  • Kim, Seon Myeong (Department of Radiation Oncology, Korea University Guro Hospital) ;
  • Kim, Young Bum (Department of Radiation Oncology, Korea University Guro Hospital)
  • 박성준 (고려대학교 구로병원 방사선종양학과) ;
  • 이영철 (고려대학교 구로병원 방사선종양학과) ;
  • 김선명 (고려대학교 구로병원 방사선종양학과) ;
  • 김영범 (고려대학교 구로병원 방사선종양학과)
  • Published : 2021.12.31

Abstract

Purpose: The purpose of this study is to evaluate the ovarian dose during radiation therapy for breast cancer in women of childbearing age through an experiment. The ovarian dose is evaluated by comparing and analyzing between the calculated dose in the treatment planning system according to the treatment technique and the measured dose using a thermoluminescence dosimeter (TLD). The clinical usefulness of lead (Pb) apron is investigated through dose analysis according to whether or not it is used. Materials and Methods: Rando humanoid phantom was used for measurement, and wedge filter radiation therapy, 3D conformal radiation therapy, and intensity modulated radiation therapy were used as treatment techniques. A treatment plan was established so that 95% of the prescribed dose could be delivered to the right breast of the Rando humanoid phantom 3D image obtained using the CT simulator. TLD was inserted into the surface and depth of the virtual ovary of the Rando hunmanoid phantom and irradiated with radiation. The measurement location was the center of treatment and the point moved 2 cm to the opposite breast from the center of the Rando hunmanoid phantom, 5cm, 10cm, 12.5cm, 15cm, 17.5cm, 20cm from the boundary of the right breast to the center of treatment and downward, and the surface and depth of the right ovary. Measurements were made at a total of 9 central points. In the dose comparison of treatment planning systems, two wedge filter treatment techniques, three-dimensional conformal radiotherapy, and intensity-modulated radiation therapy were established and compared. Treatments were compared, and dose measurements according to the use of lead apron were compared and analyzed in intensity-modulated radiation therapy. The measured value was calculated by averaging three TLD values for each point and converting using the TLD calibration value, which was calculated as the point dose mean value. In order to compare the treatment plan value with the actual measured value, the absolute dose value was measured and compared at each point (%Diff). Results: At Point A, the center of treatment, a maximum of 201.7cGy was obtained in the treatment planning system, and a maximum of 200.6cGy was obtained in the TLD. In all treatment planning systems, 0cGy was calculated from Point G, which is a point 17.5cm downward from the breast interface. As a result of TLD, a maximum of 2.6cGy was obtained at Point G, and a maximum of 0.9cGy was obtained at Point J, which is the ovarian dose, and the absolute dose was 0.3%~1.3%. The difference in dose according to the use of lead aprons was from a maximum of 2.1cGy to a minimum of 0.1cGy, and the %Diff value was 0.1%~1.1%. Conclusion: In the treatment planning system, the difference in dose according to the three treatment plans did not show a significant difference from 0.85% to 2.45%. In the ovary, the difference between the Rando humanoid phantom's treatment planning system and the actual measured dose was within 0.9%, and the actual measured dose was slightly higher. This did not accurately reflect the effect of scattered radiation in the treatment planning system, and it is thought that the dose of scattered radiation and the dose taken by CBCT with TLD inserted were reflected in the actual measurement. In dosimetry according to the with or without a lead apron, when a lead apron was used, the closer the distance from the treatment range, the more effective the shielding was. Although it is not clinically appropriate for pregnancy or artificial insemination during radiotherapy, the dose irradiated to the ovaries during treatment is not expected to significantly affect the reproductive function of women of childbearing age after radiotherapy. However, since women of childbearing age have constant anxiety, it is thought that psychological stability can be promoted by presenting the data from this study.

목 적: 본 연구에서는 가임기 여성의 유방암 방사선 치료 시 난소 선량에 대해 실험을 통하여 평가해보고자 한다. 치료기법에 따른 치료계획시스템에서 계산된 선량과 열형광선량계를 이용한 측정선량을 비교·분석하여 난소 선량을 평가하고 납(Pb) 앞치마의 사용유무에 따른 선량 분석을 통해 임상에서의 유용성을 알아보고자 한다. 대상 및 방법: 측정에는 Rando humanoid phantom을 이용하였고, 치료기법으로는 쐐기필터치료기법, 3차원 입체조형치료, 세기변조방사선치료를 사용하였다. CT simulator를 이용하여 얻은 Rando humanoid phantom 3D 영상의 우측 유방에 처방선량의 95%가 전달될 수 있도록 치료계획을 세웠고, TLD를 Rando hunmanoid phantom의 가상 표적의 표면 및 심부에 삽입하고 방사선을 조사하였다. 측정위치는 치료 중심점과 Rando humanoid phantom의 정중앙을 중심으로 반대쪽 유방으로 2cm 이동한 지점과 치료 중심축 및 하방으로 우측 유방의 경계면에서 5cm, 10cm, 12.5cm, 15cm, 17.5cm, 20cm, 우측 난소 위치의 표면과 중심점을 포함하여 총 9개 지점에서 측정하였다. 치료계획시스템의 선량 비교에서는 쐐기필터치료기법 2가지와 3차원 입체조형치료, 세기변조방사선치료 등 총 4개의 치료 계획을 수립하여 비교하였다. 그리고 TLD를 이용한 측정값 비교는 세기변조방사선치료와 쐐기필터를 이용한 치료를 비교하였고, 납 앞치마의 사용유무에 따라서 세기변조방사선치료의 선량차이를 측정하여 비교·분석하였다. 측정값은 각 포인트마다 3개의 TLD값 평균을 내고 TLD 교정값을 이용하여 환산하였으며 이를 Point dose mean값으로 계산하였다. 치료계획값과 실제 측정값을 비교하기 위해 각 지점마다 절대선량값을 측정하여 %Diff 값으로 계산하였다. 결 과: 치료 중심점인 Point A에서는 치료계획시스템에서 최대 201.7cGy가 나왔고, 실제 TLD 측정값은 최대 200.6cGy가 나왔다. 모든 치료계획시스템에서 유방 경계면으로부터 하방으로 17.5cm 떨어진 지점인 Point G 부터는 0cGy로 계산이 되었다. 실제 TLD 측정 결과 Point G에서는 최대 2.6cGy가 나왔고, 난소선량인 Point J에서는 최대 0.9cGy로 나타났으며 %Diff값은 0.3%~1.3%였다. 납 앞치마의 사용유무에 따른 선량 차이는 최대 2.1cGy에서 최소 0.1cGy로 나타났으며 %Diff값은 0.1%~1.1%였다. 결 론: 치료계획시스템에서 3가지 치료계획에 따른 선량차이는 최저 0.85%에서 최고 2.45%로 큰 격차를 보이지 않았다. 난소에서 Rando humanoid phantom의 치료계획과 실제 측정한 선량차이는 0.9% 이내로 나타났으나 실제 측정에서 조금 더 높게 측정되었다. 이는 치료계획시스템에서 산란선의 영향을 정확하게 반영하지 못하였고, 실제 측정에서는 TLD를 삽입한 상태로 CBCT를 촬영한 선량과 산란선량이 반영된 것으로 사료된다. 납 앞치마의 유무에 따른 선량측정에서 납 앞치마를 사용했을 경우에 치료범위에서 가까운 거리일수록 차폐의 효과가 있었으며, 치료범위에서 15cm 이상 거리가 있는 경우에는 거의 영향을 미치지 않는 것으로 나타났다. 임상적으로 방사선 치료 중에는 임신이나 인공수정을 하기에는 적절하지 않지만, 치료 중 난소에 조사된 선량은 방사선 치료 후 가임기 여성의 생식 기능에 크게 영향을 주지 않을 것으로 생각된다. 하지만 가임 여성의 경우에는 지속적인 불안감을 가지고 있으므로 이번 결과를 통한 데이터를 제시함으로써 심리적인 안정을 도모할 수 있을 것으로 사료된다.

Keywords

References

  1. 이보람. 유방암 방사선치료 기법에 따른 선량 비교 : 3차원 입체조형치료, 세기 변조 방사선치료, 입체세기조절회전 방사선치료. 2013;36(3):237-244
  2. Deep Inspiration Breath-Hold (DIBH) Techniques for Reducing Cardiotoxicity of Breast Cancer Radiotherapy. 2021;37(4):29712-29715
  3. 유방암백서. 유방암학회. 2020;1-25
  4. Bajpai J, Majumdar A, Satwik R, et al. Practical consensus recommendations on fertility preservation in patients with breast cancer. South Asian J Cancer 2018; 7(2): 110. https://doi.org/10.4103/sajc.sajc_113_18
  5. Antypas C, Sandilos P, Kouvaris J, et al. Fetal dose-evaluation during breast cancer radiotherapy. Int J RadiatOncol Biol Phys 1998; 40(4): 995-9. https://doi.org/10.1016/S0360-3016(97)00909-7
  6. 김선명. 열형광선량계(TLD)와 MOSFET을 이용한 유방암 방사선치료계획에 대한 피부선량 평가. 2015;27(2):107-113
  7. 윤일규. 전립선암의 세기조절 방사선치료 시 불균질부에 의한 선량변화에 관한 고찰. 2007;19(2):107-112
  8. Islam MK, Saeedi F. A simplified shielding approach for limiting fetal dose during radiation therapy of pregnant patients. Int J Radiat Oncol Biol Phys. 2001;49:1469-73. https://doi.org/10.1016/s0360-3016(01)01447-x
  9. Kennedy EV, Iball GR, Brettle DS. Investigation into the effects of lead shielding for fetal dose reduction in CT pulmonary angiography. Br J Radiol. 2007;80:631-8. https://doi.org/10.1259/bjr/31771954
  10. Fairbanks, E. J.; DeWerd, L. A. Thermoluminescent characteristics of LiF:Mg, Ti from three manufacturers. Med. Phys. 1993;20:729-731 https://doi.org/10.1118/1.597023
  11. L. Z. Luo. The study of new calibration features in the Harshaw TLD system. 2007:125(1-4):93-97 https://doi.org/10.1093/rpd/ncl542
  12. R Muller-Runkel, U P Kalokhe. Scatter dose from tangential breast irradiation to the uninvolved breast. 1990;175(3)
  13. Stovall M, Blackwell CR, Cundiff J, et al. Fetal dose from radiotherapy with photon beams: report of AAPM Radiation Therapy Committee Task Group No. 36. Med Phys 1995; 22(1): 63-82. https://doi.org/10.1118/1.597525
  14. Yin L, Lu S, Zhu J, Zhang W, Ke G. Ovarian transposition before radiotherapy in cervical cancer patients: functional outcome and the adequate dose constraint. Radiat Oncol 2019; 14(1): 100. https://doi.org/10.1186/s13014-019-1312-2
  15. Teh WT, Stern C, Chander S, Hickey M. The impact of uterine radiation on subsequent fertility and pregnancy outcomes. Biomed Res Int 2014; 2014: 1-8.
  16. Sudour H, Chastagner P, Claude L, et al. Fertility and pregnancy outcome after abdominal irradiation that included or excluded the pelvis in childhood tumor survivors. Int J Radiat Oncol Biol Phys 2010; 76(3): 867-73. https://doi.org/10.1016/j.ijrobp.2009.04.012