• Title/Summary/Keyword: 충.방전특성

Search Result 495, Processing Time 0.024 seconds

Reduced Graphene Oxide / Polyaniline Composite Material for Supercapacitor Electrode (환원된 그래핀 옥사이드/폴리아닐린 복합재료 기반의 슈퍼커패시터용 전극 제조)

  • Jeong, Hyeon Taek;Kim, Se Hyun;Ahn, Won Jun;Choi, Jae Yong;Park, Hyeon Young;Kim, Chang Hyun;Kim, Yong Ryeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1088-1095
    • /
    • 2018
  • In this study, reduced graphene oxide/polyaniline composite was fabricated tomaximize their advantages with electrochemical performances and use as a electrodematerial for supercapcaitor. Polyaniline as an electrode material was synthesized bychemical polymerization of aniline monomer and reduced graphene oxide wasintroduced to prepare composite with polyaniline without any pre-treatment. Thereduced graphene oxide, polyaniline and their composite electrodes were fabricatedon gold coated PET(polyethylene terephthalate) substrate through spray coatingmethod which can also apply to industrial scale. we have also prepared reducedgraphene oxide and polyaniline single material electrode to compare theirelectrochemical properties with reduced graphene oxide/polyaniline composite electrode. We have analyzed and compared electrochemical properties of eachelectrodes by using cyclic voltammetry(CV), galvanostaticcharge-discharge(GCD) and electrochemical impedancespectroscopy(EIS) at same condition. As a result, reduced graphene oxide /polyaniline composite electrode showed higher capacitance value more thanpolyaniline and reduced graphene oxide electrode, respectively. Internal resistanceof reduce graphene oxide/polyaniline composite electrode was 24% and 58% lessthan polaniline and reduced graphene oxide electrode respectively. These resultsconsidered that reduced graphene oxide/polyaniline composite electrode has potential ability and enable to apply flexible energy storage and wearable devices.

Effect of Vinylene Carbonate as an Electrolyte Additive on the Electrochemical Properties of Micro-Patterned Lithium Metal Anode (미세 패턴화된 리튬금속 전극의 Vinylene Carbonate 첨가제 도입에 따른 전기화학 특성에 관한 연구)

  • Jin, Dahee;Park, Joonam;Dzakpasu, Cyril Bubu;Yoon, Byeolhee;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.2
    • /
    • pp.69-78
    • /
    • 2019
  • Lithium metal anode with the highest theoretical capacity to replace graphite anodes are being reviewed. However, the dendrite growth during repeated oxidation/reduction reaction on lithium metal surface, which results in poor cycle performance and safety issue has hindered its successful implementation. In our previous work, we solved this problem by using surface modification technique whereby a surface pattern on lithium metal anode is introduced. Although the micro-patterned Lithium metal electrode is beneficial to control Li metal deposition efficiently, it is difficult to control the mossy-like Li granulation at high current density ($>2.0mA\;cm^{-2}$). In this study, we introduce vinylene carbonate (VC) electrolyte additive on micro patterned lithium metal anode to suppress the lithium dendrite growth. Owing to the synergetic effect of micro-patterned lithium metal anode and VC electrolyte additive, lithium dendrite at a high current density is dense. As a result, we confirmed that the cycle performance was further improved about 6 times as compared with the reference electrode.

A Study on the Synthesis and Electrochemical Characteristics of Carbonized Coffee Powder for Use as a Lithium-Ion Battery Anode (리튬 이온 이차전지 음극 활물질용 탄화 커피 분말 제조 및 전기화학적인 특성연구)

  • Kim, Tae Gyun;Cho, Jin Hyuk;Pham-Cong, De;Jeon, Injun;Hwang, Jin Hyun;Kim, Kyoung Hwa;Cho, Chae Ryong
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1315-1323
    • /
    • 2018
  • We studied the carbonization due to the annealing condition of waste coffee powder for application as an active anode material for lithium-ion batteries (LIBs). The coffee powder used as an active anode material for LIBs was obtained from coffee beans, not from a coffee shells. The waste coffee powder was dried in air and heat-treated in an $Ar/H_2$ atmosphere to obtain a pore-forming activated carbon powder. The specific capacity of the sample annealed at $700^{\circ}C$ was still 303 mAh/g after 1000 cycles at a current density of 1000 mA/g and with a coulombic efficiency of over 99.5%. The number of pores and the pore size of the waste coffee powder were increased due to chemical treatment with KOH, which had the some effect as an increased specific surface area. The waste coffee powder is considered to be a very promising active anode material because of both its excellent electrochemical properties due to enhanced carrier conduction and its being a cost effective resource for use in LIBs.

Graphene Oxide (GO) Layered Structure Ion Exchange Membrane Application for Vanadium Redox Flow Battery (VRB) System Study (산화그라핀 (Graphene Oxide, GO)이 코팅된 양이온 교환막을 용한 바나듐 레독스 흐름 전지 (Vanadium Redox Flow attery, VRB) 시스템에 관한 연구)

  • Lee, Kwan Ju;Chu, Young Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.2
    • /
    • pp.94-102
    • /
    • 2014
  • Cation exchange membrane (Nafion) was modified to reduce the vanadium ion permeation through the membrane and to increase the vanadium redox flow battery (VRB) system performance by coating the graphene oxide (GO) which has nano-plate like morphology. Modified membrane properties were studied by measuring the ion exchange capacity (I.E.C), water uptake and proton conductivity. The thickness of the coated layer on the surface of the Nafion membrane was observed as $0.93{\mu}m$ by SEM. Proton conductivity and vanadium ion permeability of the modified membrane were decreased to 27% and 25% compared to that of the commercial Nafion membrane respectively. VRB single cell performance test was performed to compare the system performance of the VRB applied with commercial Nafion membrane and modified membrane. VRB system applied with modified membrane showed higher coulombic efficiency and energy efficiency than the VRB system applied with the commercial Nafion membrane due to the reduction of the vanadium ion permeation. From these result, we could suggest that the membrane modification by coating the GO on the surface of the Nafion membrane could be one of the promising strategies to reduce the vanadium ion permeation and to increase the VRB system performance effectively.

Electrochemical Characteristics of Supercapacitor Electrode Using MnO2 Electrodeposited Carbon Nanofiber Mats from Lignin-g-PAN Copolymer (이산화망간 전기증착 리그닌 기반 탄소나노섬유 매트를 이용한 슈퍼캐퍼시터용 전극소재의 전기·화학적 특성)

  • Kim, Seok Ju;Youe, Won-Jae;Kim, Yong Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.750-759
    • /
    • 2016
  • The $MnO_2$ electrodeposited on the surface of the carbon nanofiber mats ($MnO_2$-LCNFM) were prepared from electrospun lignin-g-PAN copolymer via heat treatments and subsequent $MnO_2$ electrodeposition method. The resulting $MnO_2$-LCNFM was evaluateed for its potential use in a supercapicitor electrode. The increase of $MnO_2$ electric deposition time was revealed to increase diameter of carbon nanofibers as well as $MnO_2$ content on the surface of carbon nanofiber mats as confirmed by scanning electon microscope (SEM) analysis. The electrochemical properties of $MnO_2$-LCNFM electrodes are evaluated through cyclic voltammetry test. It was shown that $MnO_2$-LCNFM electrode exhibited good electrochemical performance with specific capacitance of $168.0mF{\cdot}cm^{-2}$. The $MnO_2$-LCNFM supercapacitor successfully fabricated using the gel electrolyte ($H_3PO_4$/Polyvinyl alcohol) showed to have the capacitance efficiency of ~90%, and stable behavior during 1,000 charging/discharging cycles.

Potential Characteristics of Supercapacitor Based on Ruthenium Oxide-Aqueous Electrolyte (루테늄 산화물-수계 전해액 수퍼캐패시터의 전위 특성)

  • Doh, Chil-Hoon;Choi, Sang-Jin;Moon, Seong-In;Yun, Mun-Su;Yug, Gyeong-Chang;Kim, Sang-Gil;Lee, Ju-won
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.93-97
    • /
    • 2003
  • The electrode for a supercapacitor was prepared using an amorphous ruthenium oxide, which was synthesized from ruthenium trichloride hydrate$(RuO_2{\cdot}nH_2O)$. A supercapacitor was assembled with an electrode of ruthenium oxide material on a current collector of tantalum, and an electrolyte of 4.8 M sulfuric acid. The result of the AC impedance analyses on $Ta/H_2SO_4(4.8 M)/Pt$ cell showed that tantalum was stable at the potential range of $0.0\~1.1V(vs. SCE)$. Therefore, Ta film could be used the supercapacitor as a current collector. The irreversible hydrolysis in the supercapacitor occurred over ca. 1.0V(vs.SCE) when the supercapacitor was protonated to 0.5V(vs. SCE). The supercapacitor protonated to 0.5V(vs.SCE) showed good electrochemical properties when it was tested at the potential range of 1.0V in the charge-discharge test. The potential range of the electrodes including the positive and the negative electrode was varied between -0.004 and 0.995V(vs. SCE). The potential ranges of the positive and the negative electrode were $-0.004\~0.515V(vs.\;SCE)\;and\; 0.515\~0.995V(vs.\;SCE)$, respectively.

Relationship between Particle Density and Electrochemical Properties of Spherical LiMn2-xMxO4 (M = Al, Mg, B) Spinel Cathode Materials (구형 스피넬계 LiMxMn2-xO4 (M = Al, Mg, B) 양극소재의 입자치밀도와 전지성능간의 상관관계에 대한 연구)

  • Kim, Kyoung-Hee;Jung, Tae-Gyu;Song, Jun-Ho;Kim, Young-Jun
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.67-73
    • /
    • 2012
  • Spherical lithium manganese oxide spinel, $LiMn_{2-x}M_xO_4$ (M = Al, Mg, B) prepared by wet-milling, spray-drying, and sintering process has been investigated as a cathode material for lithium ion batteries. As-prepared powders exhibit various surface morphologies and internal density in terms of boron (B) doping level. It is found that the dopant B drives the growth of the primary particle and minimizes the surface area of the powder. As a result, the dopant enhances the internal density of the particles. Electrochemical tests demonstrated that the capacity of the synthesized material at 5 C could be maintained up to 90% of that at 0.2 C. The cycle performance of the material showed that the initial capacity was retained up to 80% even after 500 cycles under the high temperature of $60^{\circ}C$.

Synthesis and Electrochemical Characteristics of Mesoporous Silicon/Carbon/CNF Composite Anode (메조기공 Silicon/Carbon/CNF 음극소재 제조 및 전기화학적 특성)

  • Park, Ji Yong;Jung, Min Zy;Lee, Jong Dae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.543-548
    • /
    • 2015
  • Si/C/CNF composites as anode materials for lithium-ion batteries were examined to improve the capacity and cycle performance. Si/C/CNF composites were prepared by the fabrication process including the synthesis and magnesiothermic reduction of SBA-15 to obtain Si/MgO by ball milling and the carbonization of phenol resin with CNF and HCl etching. Prepared Si/C/CNF composites were then analysed by BET, XRD, FE-SEM and TGA. Among SBA-15 samples synthesized at reaction temperatures between 50 and $70^{\circ}C$, the SBA-15 at $60^{\circ}C$ showed the largest specific surface area. Also the electrochemical performances of Si/C/CNF composites as an anode electrode were investigated by constant current charge/discharge test, cyclic voltammetry and impedance tests in the electrolyte of LiPF6 dissolved in mixed organic solvents (EC : DMC : EMC = 1 : 1 : 1 vol%). The coin cell using Si/C/CNF composites (Si : CNF = 97 : 3 in weight) showed better capacity (1,947 mAh/g) than that of other composition coin cells. The capacity retention ratio decreased from 84% (Si : CNF = 97 : 3 in weight) to 77% (Si : CNF = 89 : 11 in weight). It was found that the Si/C/CNF composite electrode shows an improved cycling performance and electric conductivity.

Electrochemical Performance on the H3BO3 Treated Soft Carbon modified from PFO as Anode Material (음극소재로 PFO에서 개질된 붕산처리 소프트 카본의 전기화학적 성능)

  • Lee, Ho Yong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.746-752
    • /
    • 2016
  • In this study, soft carbon was prepared by carbonization of carbon precursor (pitch) obtained from PFO (pyrolysis fuel oil) heat treatment. Three carbon precursors prepared by the thermal reaction were 3903 (at $390^{\circ}C$ for 3 h), 4001 (at $400^{\circ}C$ for 1 h) and 4002 (at $400^{\circ}C$ for 2 h). After the prepared soft carbon was ground to a particle size of $25{\sim}35^{\circ}C$, the soft carbon was synthesised by the chemical treatment with boric acid ($H_3BO_3$). The prepared soft carbon were analysed by XRD, FE-SEM and XPS. Also, the electrochemical performances of soft carbon were investigated by constant current charge/discharge test, cyclic voltammetry and impedance tests in the electrolyte of $LiPF_6$ dissolved inorganic solvents (EC:DMC=1:1 vol%+VC 3 wt%). The coin cell using soft carbon of $25{\sim}35^{\circ}C$ with 3903 soft carbon ($H_3BO_3$/Pitch=3:100 in weight) has better initial capacity and efficiency (330 mAh/g, 82%) than those of other coin cells. Also, it was found that the retention rate capability of 2C/0.1C was 90% after 30 cycles.

Electrochemical Study of Nanoparticle Li4Ti5O12 as Negative Electrode Material for Lithium Secondary Battery (리튬이차전지 음극재용 나노입자 Li4Ti5O12의 전기화학적 연구)

  • Oh Mi-Hyun;Kim Han-Joo;Kim Young-Jae;Son Won-Keun;Lim Kee-Joe;Park Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • Lithium titanium oxide $(Li_4Ti_5O_{12})$ with spinel-framework structures as anode material for lithium-ion battery was prepared by sol-gel and high energy ball milling (HEBH) method. According to the X-ray diffraction (XRD), Particle Size Analyses(PSA) and scanning electron microscopy (SEM) analysis, uniformly distributed $Li_4Ti_5O_{12}$ particles with grain sizes of 100 nm were observed. Half cells, consisting of $Li_4Ti_5O_{12}$ as working electrode and lithium foil as both counter and reference electrodes showed the high performance of high rate discharge capacity and 173 mAh/g at 0.2C in the range of $1.0\sim2.5 V$. Furthermore, the crystalline structure of $Li_4Ti_5O_{12}$ didn't transform during the lithium intercalation and deintercalation process.