Browse > Article
http://dx.doi.org/10.5658/WOOD.2016.44.5.750

Electrochemical Characteristics of Supercapacitor Electrode Using MnO2 Electrodeposited Carbon Nanofiber Mats from Lignin-g-PAN Copolymer  

Kim, Seok Ju (Division of Wood chemistry & Microbiology, Department of Forest Resources Utilization, National Institute of Forest Science)
Youe, Won-Jae (Division of Wood chemistry & Microbiology, Department of Forest Resources Utilization, National Institute of Forest Science)
Kim, Yong Sik (Division of Wood chemistry & Microbiology, Department of Forest Resources Utilization, National Institute of Forest Science)
Publication Information
Journal of the Korean Wood Science and Technology / v.44, no.5, 2016 , pp. 750-759 More about this Journal
Abstract
The $MnO_2$ electrodeposited on the surface of the carbon nanofiber mats ($MnO_2$-LCNFM) were prepared from electrospun lignin-g-PAN copolymer via heat treatments and subsequent $MnO_2$ electrodeposition method. The resulting $MnO_2$-LCNFM was evaluateed for its potential use in a supercapicitor electrode. The increase of $MnO_2$ electric deposition time was revealed to increase diameter of carbon nanofibers as well as $MnO_2$ content on the surface of carbon nanofiber mats as confirmed by scanning electon microscope (SEM) analysis. The electrochemical properties of $MnO_2$-LCNFM electrodes are evaluated through cyclic voltammetry test. It was shown that $MnO_2$-LCNFM electrode exhibited good electrochemical performance with specific capacitance of $168.0mF{\cdot}cm^{-2}$. The $MnO_2$-LCNFM supercapacitor successfully fabricated using the gel electrolyte ($H_3PO_4$/Polyvinyl alcohol) showed to have the capacitance efficiency of ~90%, and stable behavior during 1,000 charging/discharging cycles.
Keywords
lignin-g-PAN copolymer; $MnO_2$; carbon nanofiber mat; supercapacitor;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Dubal, D.P., Gund, G.S., Holze, R., Lokhande, C.D. 2013. Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors. Journal of Power Sources 242: 687-698.   DOI
2 Fengel, D., Wegener, G. 1989. Wood: Chemistry, Ultrastructure, Reactions. Walter De Gruyter, Berlin.New York.
3 Gao, W., Singh, N., Song, L., Liu, Z., Reddy, A.L.M., Ci, L., Vajtai, R., Zhang, Q., Wei, B., Ajaya, P.M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nature Nanotechnology 6: 496-499.
4 Gellerstedt, G., Sjoholm, E., Brodin, I. 2010. The wood-based biorefinery: a source of carbon fiber? The Open Agriculture Journal 4: 119-124.   DOI
5 Gordobil, O., Egues, I., Llano-Ponte, R., Labidi, J. 2014. Physicochemical properties of PLA lignin blends. Polymer Degradation Stability 108: 330-338.   DOI
6 Huang, Y.G., Zhang, X.H., Chen, X.B., Wang, H.Q., Che, J.R., Zhong, X.X., Li, Q.Y. 2015. Electrochemical properties of $MnO_2$-deposited $TiO_2$ nanotube arrays 3D composite electrode for supercapacitors. International Journal of Hydrogen Energy 40(41): 14331-14337.   DOI
7 Huang, M. Zhang, Y., Li, F., Zhang, L., Ruoff, R.S., Wen, Z., Liu, Q. Self-assembly of mesoporous nanotubes assembled from interwoven ultrthin birnessite-type $MnO_2$ nanosheets for asymmetric supercapacitors. Scientific Reports 4: 3878.
8 Hur, J.H., Seo, M.K., Kim, H.Y., Kim, I.J., Park, S.J. 2012. Influence of KOH activation on electrochemical performance of coal tar pitch-based activated carbons for supercapacitor. Polymer (Korea) 36(6): 756-760.   DOI
9 In, J.H., Kumar, S., Shao-Horn, Y., Barbastathis, G. 2006. Origami fabrication of nanostructured, three-dimensional devices: Electrochemical capacitors with carbon electrodes. Applied Physics Letters 88: 083104.   DOI
10 Kaempgen, M., Chan, C.K., Ma, J., Cui, Y., Gruner, G. 2009. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano letters 9(5): 1872-1876.   DOI
11 Kai, Kl., Kobayashi, Y., Yamada, Y., Miyazaki, K., Abe, T., Uchimoto, Y., Kageyama, H. Electochemical characterization of single-layer $MnO_2$ nanosheets as a high-capacitance pseudocapacitor electrode. Journal of Materials Chemistry 22: 14691-14695.   DOI
12 Kim, K.S., Park, S.J. 2011. Influence of multi-walled carbon nanotubes on the electrochemical performance of graphene nanocomposites for supercapacitor electrodes. Electrochimica Acta 56: 1629-1635.   DOI
13 Kim, S.J., Kim, Y.S. 2013. The analysis of products from base-catalyzed depolymerization of kraft lignin. Journal of the Wood Science and Technology 41(6): 583-593.
14 Kim, Y.S., Youe, W.J., Kim, S.J., Lee, O.K., Lee, S.S. 2015. Preparation of a Thermoplastic Lignin-Based Biomaterial through Atom Transfer Radical Polymerization. Journal of Wood Chemistry and Technology 35(4): 251-259.   DOI
15 Kleinert, M., Barth, T. 2008. Phenols from lignin. Chemical Engineering & Technol. 31(5): 736-745.   DOI
16 Li, L., Nan, C., Lu, J., Peng, Q., Li, Y. 2012. ${\alpha}$-$MnO_2$ nanotubes: high surface area and enhanced lithium battery properties. Journal of the Chemical Society, Chemical Communications 48: 6945-6947.   DOI
17 Li, Z., Mi, Y., Liu, X. Liu, S., Yang, S., Wang, J. 2011. Flexible graphene/$MnO_2$ composite papers for supercapacitor electrodes. Journal of Material Chemistry 21: 14706-14711.   DOI
18 Ning, X., Wang, X., Yu, X., Zhao, J., Wang, M., Li, H., Yang, Y. 2016. Outstanding supercapacitive properties of Mn-doped $TiO_2$ micro/nanostructure porous film prepared by anodization method. Scientific Reports 6: 22634.   DOI
19 Norberg, I., Nordstrom, Y. Drougge, R., Gellerstedt, G., Sjoholm, E. 2013. A new method for stabilizing softwood kraft lignin fiber for carbon fiber production. Journal of Applied Polymer Science 128(6): 3824-2830.   DOI
20 Pandey, M.P., Kim, C.S., 2011. Lignin depolymerization and conversion: a review of thermochemical methods. Chemical Engineering & Technology 34(1): 29-41.   DOI
21 Pech, D., Brunet, M., Durou, H., Huang, P., Mochalin, V., Gogotsi, Y., Taberna, P.L., Simon, P. 2010. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nature Nanotechnology 5: 651-654.   DOI
22 Pei, Z., Zhu, M., Huang, Y., Xue, Q., Geng, H., Zhi, C. 2016. Dramatically improved energy conversion and storage efficiencies by simultaneously enhancing charge transfer and creating active sites in $MnO_x/TiO_2$ nanotube composite electrodes. Nano Energy 20: 254-263.   DOI
23 Qu, Q., Zhu, Y., Gao, X., Wu, Y. 2012. Core-shell structure of polypyrrole grown on V2O5 nanoribbon as high performance anode material for supercapacitors. Advanced Energy Materials 2(8): 950-955.   DOI
24 Ramados, A., Kim, S.J. 2014. Hierarchically structured $$TiO_2@MnO_2$$ nanowall arrays as potential electrode material for high-performance supercapacitors. International Journal of Hydrogen Energy 39(23): 12201-12212.   DOI
25 Simon, P., Gogotsi, Y. 2008. Materials for electrochemical capacitors. Nature Materials 7: 845-854.   DOI
26 Bae, J.H., Song, M.K., Park, Y.J., Kim, J.M., Liu, M., Wang, Z.L. 2011. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angewandte Chemie International Edition 50(7): 1683-1687.   DOI
27 Xia, X.H., Tu, J.P., Wang, X.L., Gu, C.D., Zhao, X.B. 2011. Mesoporous $Co_3O_4$ monolayer hollow-sphere array as electrochmical pseudocapacitor material. Journal of the Chemical Society, Chemical Communications 47: 5786-5788.   DOI
28 Yan, D., Guo, Z., Zhu, G., Yu, Z., Xu, H., Yu, A. 2012. $MnO_2$ film with three-dimensional structure prepared by hydrothermal process for supercapacitor. Journal of Power Sources 199: 409-412.   DOI
29 Youe, W.J., Lee, S.M., Lee, S.S., Lee, S.H., Kim, Y.S. 2016. Characterization of carbon nanofiber mats produced from electrospun lignin-g-polyacrylonitrile copolymer. International Journal of Biological Macromolecules 82: 497-504.   DOI
30 Yu, G., Hu, L., Liu, N., Vosgueritchian, M., Yang, Y., Cui, Y., Bao, Z. 2011. Enhancing the supercapacitor performance of graphene/$MnO_2$ nanostructured electrodes by conductive wrapping. Nano Letters 11: 4438-4442.   DOI
31 Yu, M., Zhai, E., Lu, X., Chen, X., Xie, S., Li, W., Liang, C., Zhao, W., Zhang, L., Tong, Y. Manganese dioxide nanorod arrays on carbon fabric for flexible solid-state supercapacitors. Journal of Power Sources 239: 64-71.   DOI
32 Yuan, L., Lu, X.H., Xiao, X., Zhai, T., Dai, J., Zhang, F., Hu, B., Wang, X., Gong, L., Chen, J., Hu, C., Tong, Y., Zhou, J., Wang, Z.L. 2012. Flexible solid-state supercapacitors based on carbon nanoparticles/$MnO_2$ nanorods hybrid structure. ACS nano 6(1): 656-661.   DOI
33 Zhang, Y.Q., Xia, X.H., Tu, J.P., Mai, Y.J., Shi, S.J., Wang, X.L. Gu, C.D. 2012. Self-assembled synthesis of hierarchically porous NiO film and its application for electrochemical capacitors. Journal of Power Sources 199: 413-417.   DOI
34 Zhao, x., Zhang, L., Murali, S., Stoller, M.D., Zhang, Q., Zhu, Y., Ruoff, R.S. Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors. ACS Nano 6(6): 5404-5412.   DOI
35 Zhou, H., Zhang, Y. 2014. Enhanced electrochemical performance of manganese dioxide spheres deposited on a titanium dioxide nanotube arrays substrate. Journal of Power Sources, 272: 866-879.   DOI
36 Chen P.C., Shen, G., Shi, Y., Chen, H., Zhou, C. 2010. Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes. ACS Nano 4(8): 4403-4411.   DOI
37 Choi, B.G., Huh, Y.S., Hong, W.H. 2012, Electrochemical characterization of porous raphene film for supercapacitor electrode. Korean Chemistry Engineering Research 50(4): 754-757.   DOI